About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 141395, 13 pages
http://dx.doi.org/10.1155/2012/141395
Research Article

Antilipogenic and Anti-Inflammatory Activities of Codonopsis lanceolata in Mice Hepatic Tissues after Chronic Ethanol Feeding

1Department of Food and Nutrition, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Republic of Korea
2Department of Food and Nutrition, Sookmyung Women's University, 52 Hyochangwon-gil, Yongsan-gu, Seoul 140-742, Republic of Korea
3Department of Food Science, College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-ku, Seoul 136-701, Republic of Korea

Received 13 July 2011; Accepted 8 August 2011

Academic Editor: Masa-Aki Shibata

Copyright © 2012 Areum Cha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Peng, P. A. Borea, K. Varani et al., “Adenosine signaling contributes to ethanol-induced fatty liver in mice,” Journal of Clinical Investigation, vol. 119, no. 3, pp. 582–594, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. W. Crabb, “Recent developments in alcoholism: the liver,” Recent Developments in Alcoholism, vol. 11, pp. 207–230, 1993. View at Scopus
  3. D. W. Crabb and S. Liangpunsakul, “Alcohol and lipid metabolism,” Journal of Gastroenterology and Hepatology, vol. 21, supplement 3, pp. S56–S60, 2006. View at Publisher · View at Google Scholar · View at PubMed
  4. H. Tsukamoto, H. She, S. Hazra, J. Cheng, and J. Wang, “Fat paradox of steatohepatitis,” Journal of Gastroenterology and Hepatology, vol. 23, supplement 1, pp. S104–S107, 2008. View at Publisher · View at Google Scholar · View at PubMed
  5. M. Fischer, M. You, M. Matsumoto, and D.W. Crabb, “Peroxisome proliferator-activated receptor α (PPARα) agonist treatment reverses PPARα dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice,” Journal of Biological Chemistry, vol. 278, no. 30, pp. 7997–8004, 2003.
  6. O. Gavrilova, M. Haluzik, K. Matsusue et al., “Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass,” Journal of Biological Chemistry, vol. 278, no. 36, pp. 34268–34276, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. E. Nagy, I. Diamond, D. J. Casso, C. Franklin, and A. S. Gordon, “Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter,” Journal of Biological Chemistry, vol. 265, no. 4, pp. 1946–1951, 1990. View at Scopus
  8. J. G. Puig and I. H. Fox, “Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate,” Journal of Clinical Investigation, vol. 74, no. 3, pp. 936–941, 1984. View at Scopus
  9. L. E. Nagy, “Ethanol metabolism and inhibition of nucleoside uptake lead to increased extracellular adenosine in hepatocytes,” American Journal of Physiology, vol. 262, no. 5, pp. C1175–C1180, 1992. View at Scopus
  10. E. S. Chan, M. C. Montesinos, P. Fernandez et al., “Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis,” British Journal of Pharmacology, vol. 148, no. 8, pp. 1144–1155, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. Z. Peng, P. Fernandez, T. Wilder et al., “Ecto-5′-nucleotidase (CD73) -mediated extracellular adenosine production plays a critical role in hepatic fibrosis,” FASEB Journal, vol. 22, no. 7, pp. 2263–2272, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. B. B. Fredholm, “Adenosine, an endogenous distress signal, modulates tissue damage and repair,” Cell Death and Differentiation, vol. 14, no. 7, pp. 1315–1323, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. Guinzberg, I. Laguna, A. Zentella, R. Guzman, and E. Piña, “Effect of adenosine and inosine on ureagenesis in hepatocytes,” Biochemical Journal, vol. 245, no. 2, pp. 371–374, 1987. View at Scopus
  14. R. Guinzberg, A. Diaz-Cruz, S. Uribe, and E. Pina, “Inhibition of adenosine mediated responses in isolated hepatocytes by depolarizing concentrations of K+,” Biochemical and Biophysical Research Communications, vol. 197, no. 1, pp. 229–234, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Tinton, V. H. Lefebvre, O. C. Cousin, and P. M. Buc-Calderon, “Cytolytic effects and biochemical changes induced by extracellular ATP to isolated hepatocytes,” Biochimica et Biophysica Acta, vol. 1176, no. 1-2, pp. 1–6, 1993. View at Scopus
  16. E. Gonzalez-Benitez, R. Guinzberg, A. Diaz-Cruz, and E. Pina, “Regulation of glycogen metabolism in hepatocytes through adenosine receptors. Role of Ca2+ and cAMP,” European Journal of Pharmacology, vol. 437, no. 3, pp. 105–111, 2002. View at Publisher · View at Google Scholar
  17. A. K. Dhalla, M. Santikul, M. Smith, M. Y. Wong, J. C. Shryock, and L. Belardinelli, “Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: comparison with nicotinic acid,” Journal of Pharmacology and Experimental Therapeutics, vol. 321, no. 1, pp. 327–333, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. K. Dhalla, M. Y. Wong, P. J. Voshol, L. Belardinelli, and G. M. Reaven, “A1 adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents,” American Journal of Physiology, vol. 292, no. 5, pp. E1358–E1363, 2007. View at Publisher · View at Google Scholar · View at PubMed
  19. E. C. Klaasse, A. P. Ijzerman, W. J. de Grip, and M. W. Beukers, “Internalization and desensitization of adenosine receptors,” Purinergic Signalling, vol. 4, no. 1, pp. 21–37, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. B. S. Bhagwandeen, M. Apte, L. Manwarring, and J. Dickeson, “Endotoxin induced hepatic necrosis in rats on an alcohol diet,” Journal of Pathology, vol. 152, no. 1, pp. 47–53, 1987. View at Scopus
  21. S. Q. Yang, H. Z. Lin, M. D. Lane, M. Clemens, and A. M. Diehl, “Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2557–2562, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Diehl, “Nonalcoholic fatty liver disease: implications for alcoholic liver disease pathogenesis,” Alcoholism: Clinical and Experimental Research, vol. 25, no. 5, supplement ISBRA, pp. 8S–14S, 2001. View at Scopus
  23. F. J. Cubero and N. Nieto, “Kupffer cells and alcoholic liver disease,” Revista Espanola de Enfermedades Digestivas, vol. 98, no. 6, pp. 460–472, 2006. View at Scopus
  24. T. Gustot, A. Lemmers, C. Moreno et al., “Differential liver sensitization to Toll-like receptor pathways in mice with alcoholic fatty liver,” Hepatology, vol. 43, no. 5, pp. 989–1000, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. W. L. Guo, L. Gong, Z. F. Ding et al., “Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata benth. et hook. f., as revealed by ISSR and RAPD markers,” Plant Cell Reports, vol. 25, no. 9, pp. 896–906, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. T. Lee, J. Choi, W. T. Jung, J. H. Nam, H. J. Jung, and H. J. Park, “Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins,” Journal of Agricultural and Food Chemistry, vol. 50, no. 15, pp. 4190–4193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. W. Lee, H. J. Jung, H. J. Park, D. G. Kim, J. Y. Lee, and K. T. Lee, “β-D-xylopyranosyl-(13)-β-D-glucuronopyranosyl echinocystic acid isolated from the roots of Codonopsis lanceolata induces caspase-dependent apoptosis in human acute promyelocytic leukemia HL-60 cells,” Biological and Pharmaceutical Bulletin, vol. 28, no. 5, pp. 854–859, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. G. Lee, J. Y. Kim, J. Y. Lee et al., “Regulatory effects of Codonopsis lanceolata on macrophage-mediated immune responses,” Journal of Ethnopharmacology, vol. 112, no. 1, pp. 180–188, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. E. G. Han, H. G. Moon, and S. Y. Cho, “Effect of Codonopsis lanceolata water extract on the levels of lipid in rats fed high fat diet,” Journal of the Korean Society of Food Science and Nutrition, vol. 27, pp. 940–944, 1998.
  30. C. S. Lieber, L. M. DeCarli, and M. F. Sorrell, “Experimental methods of ethanol administration,” Hepatology, vol. 10, no. 4, pp. 501–510, 1989. View at Scopus
  31. J. Folch, M. Lees, and G. H. S. Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Scopus
  32. S. Kaviarasan, P. Viswanathan, and C. V. Anuradha, “Fenugreek seed (Trigonella foenum graecum) polyphenols inhibit ethanol-induced collagen and lipid accumulation in rat liver,” Cell Biology and Toxicology, vol. 23, no. 6, pp. 373–383, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. R. S. Kumar, M. Ponmozhi, P. Viswanathan, and N. Nalini, “Effect of Cassia auriculata leaf extract on lipids in rats with alcoholic liver injury,” Asia Pacific Journal of Clinical Nutrition, vol. 11, no. 2, pp. 157–163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. G. E. Arteel, T. Uesugi, L. N. Bevan et al., “Green tea extract protects against early alcohol-induced liver injury in rats,” Biological Chemistry, vol. 383, no. 3-4, pp. 663–670, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. E. E. Emeson, M. Vlasios, S. Todd, and T. Majid, “Chronic alcohol feeding inhibits atherogenesis in C57BL/6 hyperlipidemic mice,” American Journal of Pathology, vol. 147, no. 6, pp. 1749–1758, 1995. View at Scopus
  36. G. Szabo, “Consequences of alcohol consumption on host defence,” Alcohol and Alcoholism, vol. 34, no. 6, pp. 830–841, 1999. View at Scopus
  37. C. Q. Rogers, J. M. Ajmo, and M. You, “Adiponectin and alcoholic fatty liver disease,” IUBMB Life, vol. 60, no. 12, pp. 790–797, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. S. Shklyaev, G. Aslanidi, M. Tennant et al., “Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14217–14222, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. T. Yamauchi, Y. Nio, T. Maki et al., “Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions,” Nature Medicine, vol. 13, no. 3, pp. 332–339, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. T. Yamauchi, J. Kamon, Y. Ito et al., “Cloning of adiponectin receptors that mediate antidiabetic metabolic effects,” Nature, vol. 423, no. 6941, pp. 762–769, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. X. Mao, C. K. Kikani, R. A. Riojas et al., “APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function,” Nature Cell Biology, vol. 8, no. 5, pp. 516–523, 2006. View at Scopus
  42. M. You, R. V. Considine, T. C. Leone, D. P. Kelly, and D. W. Crabb, “Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice,” Hepatology, vol. 42, no. 3, pp. 568–577, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. M. A. Jay and J. Ren, “Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus,” Current Diabetes Reviews, vol. 3, no. 1, pp. 33–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Kadowaki, T. Yamauchi, and N. Kubota, “The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS,” FEBS Letters, vol. 582, no. 1, pp. 74–80, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. T. Kadowaki, T. Yamauchi, N. Kubota, K. Hara, K. Ueki, and K. Tobe, “Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1784–1792, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. T. Kadowaki and T. Yamauchi, “Adiponectin and adiponectin receptors,” Endocrine Reviews, vol. 26, no. 3, pp. 439–451, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. N. Méndez-Sánchez, N. C. Chavez-Tapia, D. Zamora-Valdés, and M. Uribe, “Adiponectin, structure, function and pathophysiological implications in non-alcoholic fatty liver disease,” Mini-Reviews in Medicinal Chemistry, vol. 6, no. 6, pp. 651–656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Misra, “AMP activated protein kinase: a next generation target for total metabolic control,” Expert Opinion on Therapeutic Targets, vol. 12, no. 1, pp. 91–100, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. J. D. Browning and J. D. Horton, “Molecular mediators of hepatic steatosis and liver injury,” Journal of Clinical Investigation, vol. 114, no. 2, pp. 147–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Xu, Y. Wang, H. Keshaw, L. Y. Xu, K. S. Lam, and G. J. Cooper, “The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice,” Journal of Clinical Investigation, vol. 112, no. 1, pp. 91–100, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. M. You and C. Q. Rogers, “Adiponectin: a key adipokine in alcoholic fatty liver,” Experimental Biology and Medicine, vol. 234, no. 8, pp. 850–859, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. X. Hou, S. Xu, K. A. Maitland-Toolan et al., “SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase,” Journal of Biological Chemistry, vol. 283, no. 29, pp. 20015–20026, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. F. Lan, J. M. Cacicedo, N. Ruderman, and Y. Ido, “SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation,” Journal of Biological Chemistry, vol. 283, no. 41, pp. 27628–27635, 2008. View at Publisher · View at Google Scholar · View at PubMed
  54. G. Suchankova, L. E. Nelson, Z. Gerhart-Hines et al., “Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells,” Biochemical and Biophysical Research Communications, vol. 378, no. 4, pp. 836–841, 2009. View at Publisher · View at Google Scholar · View at PubMed
  55. M. Fulco and V. Sartorelli, “Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues,” Cell Cycle, vol. 7, no. 23, pp. 3669–3679, 2008.
  56. P. Puigserver and B. M. Spiegelman, “Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1 α): transcriptional coactivator and metabolic regulator,” Endocrine Reviews, vol. 24, no. 1, pp. 78–90, 2003. View at Publisher · View at Google Scholar
  57. R. B. Vega, J. M. Huss, and D. P. Kelly, “The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes,” Molecular and Cellular Biology, vol. 20, no. 5, pp. 1868–1876, 2000. View at Publisher · View at Google Scholar
  58. R. R. Schumann, S. R. Leong, G. W. Flaggs et al., “Structure and function of lipopolysaccharide binding protein,” Science, vol. 249, no. 4975, pp. 1429–1431, 1990.
  59. G. L. Su, R. L. Simmons, and S. C. Wang, “Lipopolysaccharide binding protein participation in cellular activation by LPS,” Critical Reviews in Immunology, vol. 15, no. 3-4, pp. 201–214, 1995.
  60. R. J. Ulevitch and P. S. Tobias, “Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin,” Annual Review of Immunology, vol. 13, pp. 437–457, 1995.
  61. T. R. Martin, S. M. Mongovin, P. S. Tobias et al., “The CD14 differentiation antigen mediates the development of endotoxin responsiveness during differentiation of mononuclear phagocytes,” Journal of Leukocyte Biology, vol. 56, no. 1, pp. 1–9, 1994.
  62. S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, and J. C. Mathison, “CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein,” Science, vol. 249, no. 4975, pp. 1431–1433, 1990.
  63. G. L. Su, R. D. Klein, A. Aminlari et al., “Kupffer cell activation by lipopolysaccharide in rats: role for lipopolysaccharide binding protein and Toll-like receptor 4,” Hepatology, vol. 31, no. 4, pp. 932–936, 2000.
  64. R. Medzhitov, P. Preston-Hurlburt, E. Kopp et al., “MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways,” Molecular Cell, vol. 2, no. 2, pp. 253–258, 1998.
  65. K. A. Fitzgerald, E. M. Palsson-Mcdermott, A. G. Bowie et al., “Mal (MyD88-adapter-like) is required for Toll-like recepfor-4 signal transduction,” Nature, vol. 413, no. 6851, pp. 78–83, 2001. View at Publisher · View at Google Scholar · View at PubMed
  66. T. Horng, G. M. Barton, and R. Medzhitov, “TIRAP: an adapter molecule in the Toll signaling pathway,” Nature Immunology, vol. 2, no. 9, pp. 835–841, 2001. View at Publisher · View at Google Scholar · View at PubMed
  67. A. Takaoka, H. Yanai, S. Kondo et al., “Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors,” Nature, vol. 434, no. 2, pp. 243–249, 2005. View at Publisher · View at Google Scholar · View at PubMed
  68. E. Seki, S. de Minicis, C. H. Österreicher et al., “TLR4 enhances TGF-β signaling and hepatic fibrosis,” Nature Medicine, vol. 13, no. 11, pp. 1324–1332, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. I. Hritz, P. Mandrekar, A. Velayudham et al., “The critical role of Toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88,” Hepatology, vol. 48, no. 4, pp. 1224–1231, 2008. View at Publisher · View at Google Scholar · View at PubMed
  70. J. M. Ajmo, X. Liang, C. Q. Rogers, B. Pennock, and M. You, “Resveratrol alleviates alcoholic fatty liver in mice,” American Journal of Physiology, vol. 295, no. 4, pp. G833–G842, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus