About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 141806, 6 pages
http://dx.doi.org/10.1155/2012/141806
Review Article

So Many Plasminogen Receptors: Why?

Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic, 9500 Euclid Avenue, NB50, Cleveland, OH 44195, USA

Received 2 April 2012; Accepted 7 June 2012

Academic Editor: Lindsey A. Miles

Copyright © 2012 Edward F. Plow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. F. Plow, T. Herren, A. Redlitz, L. A. Miles, and J. L. Hoover-Plow, “The cell biology of the plasminogen system,” FASEB Journal, vol. 9, no. 10, pp. 939–945, 1995. View at Scopus
  2. R. Das, E. Pluskota, and E. F. Plow, “Plasminogen and its receptors as regulators of cardiovascular inflammatory responses,” Trends in Cardiovascular Medicine, vol. 20, no. 4, pp. 120–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. L. A. Miles, S. B. Hawley, N. Baik, N. M. Andronicos, F. J. Castellino, and R. J. Parmer, “Plasminogen receptors: the sine qua non of cell surface plasminogen activation,” Frontiers in Bioscience, vol. 10, no. 2, pp. 1754–1762, 2005. View at Scopus
  4. G. M. Cesarman, C. A. Guevara, and K. A. Hajjar, “An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation,” Journal of Biological Chemistry, vol. 269, no. 33, pp. 21198–21203, 1994. View at Scopus
  5. A. Redlitz, B. J. Fowler, E. F. Plow, and L. A. Miles, “The role of an enolase-related molecule in plasminogen binding to cells,” European Journal of Biochemistry, vol. 227, no. 1-2, pp. 407–415, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Kwon, T. J. MacLeod, Y. Zhang, and D. M. Waisman, “S100A10, annexin A2, and annexin A2 heterotetramer as candidate plasminogen receptors,” Frontiers in Bioscience, vol. 10, no. 1, pp. 300–325, 2005. View at Scopus
  7. E. Pluskota, D. A. Soloviev, K. Bdeir, D. B. Cines, and E. F. Plow, “Integrin αMβ2 orchestrates and accelerates plasminogen activation and fibrinolysis by neutrophils,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 18063–18072, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Hajjar, A. T. Jacovina, and J. Chacko, “An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II,” Journal of Biological Chemistry, vol. 269, no. 33, pp. 21191–21197, 1994. View at Scopus
  9. K. D. Phipps, A. P. Surette, P. A. O'Connell, and D. M. Waisman, “Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites,” Cancer Research, vol. 71, no. 21, pp. 6676–6683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Ling, A. T. Jacovina, A. Deora et al., “Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo,” Journal of Clinical Investigation, vol. 113, no. 1, pp. 38–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. P. Surette, P. A. Madureira, K. D. Phipps, V. A. Miller, P. Svenningsson, and D. M. Waisman, “Regulation of fibrinolysis by S100A10 in vivo,” Blood, vol. 118, no. 11, pp. 3172–3181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. A. O'Connell, A. P. Surette, R. S. Liwski, P. Svenningsson, and D. M. Waisman, “S100A10 regulates plasminogen-dependent macrophage invasion,” Blood, vol. 116, no. 7, pp. 1136–1146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Das, T. Burke, and E. F. Plow, “Histone H2B as a functionally important plasminogen receptor on macrophages,” Blood, vol. 110, no. 10, pp. 3763–3772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Das and E. F. Plow, “Phosphatidylserine as an anchor for plasminogen and its plasminogen receptor, Histone H2B, to the macrophage surface,” Journal of Thrombosis and Haemostasis, vol. 9, no. 2, pp. 339–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Lacroix, F. Sabatier, A. Mialhe et al., “Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro,” Blood, vol. 110, no. 7, pp. 2432–2439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Hood and D. A. Cheresh, “Role of integrins in cell invasion and migration,” Nature Reviews Cancer, vol. 2, no. 2, pp. 91–100, 2002. View at Scopus
  17. H. W. Smith and C. J. Marshall, “Regulation of cell signalling by uPAR,” Nature Reviews Molecular Cell Biology, vol. 11, no. 1, pp. 23–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Hayes, D. Shao, M. Bailly, and S. E. Moss, “Regulation of actin dynamics by annexin 2,” EMBO Journal, vol. 25, no. 9, pp. 1816–1826, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. E. Beckner, X. Chen, J. An, B. W. Day, and I. F. Pollack, “Proteomic characterization of harvested pseudopodia with differential gel electrophoresis and specific antibodies,” Laboratory Investigation, vol. 85, no. 3, pp. 316–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Dejouvencel, L. Doeuvre, R. Lacroix et al., “Fibrinolytic cross-talk: a new mechanism for plasmin formation,” Blood, vol. 115, no. 10, pp. 2048–2056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Das, T. Burke, D. R. Van Wagoner, and E. F. Plow, “L-type calcium channel blockers exert an antiinflammatory effect by suppressing expression of plasminogen receptors on macrophages,” Circulation Research, vol. 105, no. 2, pp. 167–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Ranson, N. M. Andronicos, M. J. O'Mullane, and M. S. Baker, “Increased plasminogen binding is associated with metastatic breast cancer cells: differential expression of plasminogen binding proteins,” British Journal of Cancer, vol. 77, no. 10, pp. 1586–1597, 1998. View at Scopus
  23. P. Burtin, G. Chavanel, J. Andre-Bougaran, and A. Gentile, “The plasmin system in human adenocarcinomas and their metastases. A comparative immunofluorescence study,” International Journal of Cancer, vol. 39, no. 2, pp. 170–178, 1987. View at Scopus
  24. J. Hoover-Plow and L. Yuen, “Plasminogen binding is increased with adipocyte differentiation,” Biochemical and Biophysical Research Communications, vol. 284, no. 2, pp. 389–394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. E. A. Peterson, M. R. Sutherland, M. E. Nesheim, and E. L. G. Pryzdial, “Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2,” Journal of Cell Science, vol. 116, no. 12, pp. 2399–2408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Ratel, S. Mihoubi, E. Beaulieu et al., “VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases,” Thrombosis Research, vol. 121, no. 2, pp. 203–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. L. A. Miles and E. F. Plow, “Binding and activation of plasminogen on the platelet surface,” Journal of Biological Chemistry, vol. 260, no. 7, pp. 4303–4311, 1985. View at Scopus
  28. H.-S. Kim, E. F. Plow, and L. A. Miles, “Regulation of plasminogen receptor expression on monocytoid THP- 1 cells by adherence to extracellular matrix proteins,” Circulation, vol. 86, I-148, 1992.
  29. M. Camacho, M. C. Fondaneche, and P. Burtin, “Limited proteolysis of tumor cells increases their plasmin-binding ability,” FEBS Letters, vol. 245, no. 1-2, pp. 21–24, 1989. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Gonzalez-Gronow, S. Stack, and S. V. Pizzo, “Plasmin binding to the plasminogen receptor enhances catalytic efficiency and activates the receptor for subsequent ligand binding,” Archives of Biochemistry and Biophysics, vol. 286, no. 2, pp. 625–628, 1991. View at Scopus
  31. G. E. Stillfried, D. N. Saunders, and M. Ranson, “Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity,” Breast Cancer Research, vol. 9, no. 1, article no. R14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. J. O'Mullane and M. S. Baker, “Elevated plasminogen receptor expression occurs as a degradative phase event in cellular apoptosis,” Immunology and Cell Biology, vol. 77, no. 3, pp. 249–255, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Svenningsson and P. Greengard, “p11 (S100A10)—an inducible adaptor protein that modulates neuronal functions,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 27–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Wygrecka, L. M. Marsh, R. E. Morty et al., “Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung,” Blood, vol. 113, no. 22, pp. 5588–5598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Lighvani, N. Baik, J. E. Diggs, S. Khaldoyanidi, R. J. Parmer, and L. A. Miles, “Regulation of macrophage migration by a novel plasminogen receptor Plg-R KT,” Blood, vol. 118, no. 20, pp. 5622–5630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. V. A. Ploplis, E. L. French, P. Carmeliet, D. Collen, and E. F. Plow, “Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice,” Blood, vol. 91, no. 6, pp. 2005–2009, 1998. View at Scopus