About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 156795, 12 pages
Review Article

α-Enolase, a Multifunctional Protein: Its Role on Pathophysiological Situations

Biological Clues of the Invasive and Metastatic Phenotype Research Group, (IDIBELL) Institut d’Investigacions Biomèdiques de Bellvitge, L’Hospitalet de Llobregat, 08908 Barcelona, Spain

Received 15 May 2012; Accepted 25 June 2012

Academic Editor: Lindsey A. Miles

Copyright © 2012 Àngels Díaz-Ramos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


α-Enolase is a key glycolytic enzyme in the cytoplasm of prokaryotic and eukaryotic cells and is considered a multifunctional protein. α-enolase is expressed on the surface of several cell types, where it acts as a plasminogen receptor, concentrating proteolytic plasmin activity on the cell surface. In addition to glycolytic enzyme and plasminogen receptor functions, α-Enolase appears to have other cellular functions and subcellular localizations that are distinct from its well-established function in glycolysis. Furthermore, differential expression of α-enolase has been related to several pathologies, such as cancer, Alzheimer's disease, and rheumatoid arthritis, among others. We have identified α-enolase as a plasminogen receptor in several cell types. In particular, we have analyzed its role in myogenesis, as an example of extracellular remodelling process. We have shown that α-enolase is expressed on the cell surface of differentiating myocytes, and that inhibitors of α-enolase/plasminogen binding block myogenic fusion in vitro and skeletal muscle regeneration in mice. α-Enolase could be considered as a marker of pathological stress in a high number of diseases, performing several of its multiple functions, mainly as plasminogen receptor. This paper is focused on the multiple roles of the α-enolase/plasminogen axis, related to several pathologies.