About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 161372, 7 pages
http://dx.doi.org/10.1155/2012/161372
Research Article

Selection of Ovine Oocytes by Brilliant Cresyl Blue Staining

Key Laboratory of Animal Biotechnology of Xinjiang and Key Laboratory of Grass Livestock Reproduction and Breed Biotechnology, Ministry of Agriculture, Animal Science Academy of Xinjiang Uygur Autonomous Region, Urumqi 830000, China

Received 24 January 2012; Revised 28 February 2012; Accepted 22 March 2012

Academic Editor: Brad Upham

Copyright © 2012 Liqin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Gordon, Laboratory Production of Cattle Embryos, I. Gordon. CABI, New York, NY, USA, 2003.
  2. V. Madison, B. Avery, and T. Greve, “Selection of immature bovine oocytes for developmental potential in vitro,” Animal Reproduction Science, vol. 27, no. 1, pp. 1–11, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. F. De Loos, T. van Beneden, T. A. M. Kruip, and P. van Maurik, “Structural aspects of bovine oocyte maturation in vitro,” Molecular Reproduction and Development, vol. 31, no. 3, pp. 208–214, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Mangia and C. J. Epstein, “Biochemical studies of growing mouse oocytes: preparation of oocytes and analysis of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities,” Developmental Biology, vol. 45, no. 2, pp. 211–220, 1975. View at Scopus
  5. E. Knobil and J. D. Neill, Eds., The Physiology of Reproduction, Raven Press, New York, NY, USA, 1988.
  6. P. Wassarman and D. Albertini, “The mammalian ovum,” in The Physiology of Reproduction, E. Knobil and J. D. Neill, Eds., vol. 1, pp. 69–102, Raven Press, New York, NY, USA, 1988.
  7. S. Ericsson, M. Boice, H. Funahashi, and B. Day, “Assessment of porcine oocytes using brilliant cresyl blue,” Theriogenology, vol. 39, no. 1, p. 214, 1993.
  8. J. Roca, E. Martinez, J. M. Vazquez, and X. Lucas, “Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test,” Reproduction, Fertility and Development, vol. 10, no. 6, pp. 479–485, 1998. View at Scopus
  9. S. H. El Shourbagy, E. C. Spikings, M. Freitas, and J. C. S. John, “Mitochondria directly influence fertilisation outcome in the pig,” Reproduction, vol. 131, no. 2, pp. 233–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Rodríguez-González, M. López-Béjar, E. Velilla, and M. T. Paramio, “Selection of prepubertal goat oocytes using the brilliant cresyl blue test,” Theriogenology, vol. 57, no. 5, pp. 1397–1409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Rodríguez-Gonzáles, M. López-Bejar, D. Izquierdo, and M. T. Paramio, “Developmental competence of prepubertal goat oocytes selected with brilliant cresyl blue and matured with cysteamine supplementation,” Reproduction Nutrition Development, vol. 43, no. 2, pp. 179–187, 2003. View at Scopus
  12. A. Urdaneta, A. R. Jiménez-Macedo, D. Izquierdo, and M. T. Paramio, “Supplementation with cysteamine during maturation and embryo culture on embryo development of prepubertal goat oocytes selected by the brilliant cresyl blue test,” Zygote, vol. 11, no. 4, pp. 347–354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Pujol, M. López-Béjar, and M. T. Paramio, “Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test,” Theriogenology, vol. 61, no. 4, pp. 735–744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Alm, H. Torner, B. Löhrke, T. Viergutz, I. M. Ghoneim, and W. Kanitz, “Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity,” Theriogenology, vol. 63, no. 8, pp. 2194–2205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Bhojwani, H. Alm, H. Torner, W. Kanitz, and R. Poehland, “Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer,” Theriogenology, vol. 67, no. 2, pp. 341–345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. M. Manjunatha, P. S. P. Gupta, M. Devaraj, J. P. Ravindra, and S. Nandi, “Selection of developmentally competent buffalo oocytes by brilliant cresyl blue staining before IVM,” Theriogenology, vol. 68, no. 9, pp. 1299–1304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. G. Wu, Y. Liu, P. Zhou et al., “Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model,” Cell Research, vol. 17, no. 8, pp. 722–731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. B. A. Rodrigues, P. Rodriguez, A. E. F. Silva, L. F. Cavalcante, C. Feltrin, and J. L. Rodrigues, “Preliminary study in immature canine oocytes stained with brilliant cresyl blue and obtained from bitches with low and high progesterone serum profiles,” Reproduction in Domestic Animals, vol. 44, no. 2, pp. 255–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Otoi, K. Yamamoto, N. Koyama, S. Tachikawa, and T. Suzuki, “Bovine oocyte diameter in relation to developmental competence,” Theriogenology, vol. 48, no. 5, pp. 769–774, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Kim, J. You, S. H. Hyun, G. Lee, J. Lim, and E. Lee, “Developmental competence of morphologically poor oocytes in relation to follicular size and oocyte diameter in the pig,” Molecular Reproduction and Development, vol. 77, no. 4, pp. 330–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Anguita, A. R. Jimenez-Macedo, D. Izquierdo, T. Mogas, and M. T. Paramio, “Effect of oocyte diameter on meiotic competence, embryo development, p34 (cdc2) expression and MPF activity in prepubertal goat oocytes,” Theriogenology, vol. 67, no. 3, pp. 526–536, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Rausell, J. F. Pertusa, V. Gómez-Piquer et al., “Beneficial effects of dithiothreitol on relative levels of glutathione S-transferase activity and thiols in oocytes, and cell number, DNA fragmentation and allocation at the blastocyst stage in the mouse,” Molecular Reproduction and Development, vol. 74, no. 7, pp. 860–869, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Luberda, “The role of glutathione in mammalian gametes,” Reproductive Biology, vol. 5, no. 1, pp. 5–17, 2005. View at Scopus
  24. K. A. Zuelke, S. C. Jeffay, R. M. Zucker, and S. D. Perreault, “Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos,” Molecular Reproduction and Development, vol. 64, no. 1, pp. 106–112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Maedomari, K. Kikuchi, M. Ozawa et al., “Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro,” Theriogenology, vol. 67, no. 5, pp. 983–993, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Curnow, J. Ryan, D. Saunders, and E. Hayes, “241 Strategies to improve glutathione content of in vitro-matured bovine oocytes,” Reproduction Fertility and Development, vol. 20, no. 1, p. 200, 2008.
  27. W. X. Liao, R. K. Moore, F. Otsuka, and S. Shimasaki, “Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9: implication of the aberrant ovarian phenotype of BMP-15 mutant sheep,” The Journal of Biological Chemistry, vol. 278, no. 6, pp. 3713–3719, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. B. Tong, L. Gold, A. De Pol et al., “Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development,” Endocrinology, vol. 145, no. 3, pp. 1427–1434, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Paradis, S. Novak, G. K. Murdoch, M. K. Dyck, W. T. Dixon, and G. R. Foxcroft, “Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig,” Reproduction, vol. 138, no. 1, pp. 115–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Min, L. Jia-peng, H. Jun-cheng, et al., “The expression of maternal-effect genes Gdf9, Zar1, Mater, and Dnmt1 mRNA in ovine oocytes and in vitro embryos,” China Herbivores, no. 2, pp. 5–10, 2010.
  31. H. M. Raghu, S. Nandi, and S. M. Reddy, “Follicle size and oocyte diameter in relation to developmental competence of buffalo oocytes in vitro,” Reproduction, Fertility and Development, vol. 14, no. 1-2, pp. 55–61, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Pujol, M. Lopez-Bejar, M. J. Mertens, E. Rodriguez-Gonzales, E. Velilla, and M. T. Paramio, “Selection of immature oocytes using the brillant cresyl blue test,” Theriogenology, vol. 53, p. 466, 2000.
  33. E. Rodriguez-Gonzalez, M. Lopez-Bejar, E. Velilla, and M. T. Paramio, “Selection of prepubertal goat oocytes using the brillant cresyl blue test,” Theriogenology, vol. 57, no. 5, pp. 1397–1409, 2002.
  34. M. Gracia Catalá, D. Izquierdo, S. Uzbekova et al., “Brilliant Cresyl Blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep,” Reproduction, vol. 142, no. 4, pp. 517–527, 2011.
  35. G. J. Tiffin, D. Rieger, K. J. Betteridge, B. R. Yadav, and W. A. King, “Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development,” Journal of Reproduction and Fertility, vol. 93, no. 1, pp. 125–132, 1991. View at Scopus
  36. N. Crozet, M. Ahmed-Ali, and M. P. Dubos, “Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro,” Journal of Reproduction and Fertility, vol. 103, no. 2, pp. 293–298, 1995. View at Scopus
  37. P. Damiani, R. Fissore, J. Cibelli et al., “Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocytes,” Molecular Reproduction and Development, vol. 45, no. 4, pp. 521–534, 1996.
  38. D. G. de Matos, B. Gasparrini, S. R. Pasqualini, and J. G. Thompson, “Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content,” Theriogenology, vol. 57, no. 5, pp. 1443–1451, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. D. G. De Matos and C. C. Furnus, “The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of β-mercaptoethanol, cysteine and cystine,” Theriogenology, vol. 53, no. 3, pp. 761–771, 2000. View at Scopus
  40. M. Ozawa, T. Nagai, T. Somfai et al., “Cumulus cell-enclosed oocytes acquire a capacity to synthesize GSH by FSH stimulation during in vitro maturation in pigs,” Journal of Cellular Physiology, vol. 222, no. 2, pp. 294–301, 2010. View at Publisher · View at Google Scholar · View at Scopus