About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 201689, 4 pages
http://dx.doi.org/10.1155/2012/201689
Review Article

Cytokines and VEGF Induction in Orthodontic Movement in Animal Models

1Department of General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
2Department of Oral Pathology, Orthodontics and Oral Surgery, Institute of Biochemistry, Second University of Naples, Via L. De Crecchio 6, 80138 Naples, Italy
3INT-CROM, “Pascale Foundation” National Cancer Institute - Cancer Research Center, Via Ammiraglio Bianco, 83013 Mercogliano, Italy
4Department of Cellular and Molecular Biology and Pathology, Faculty of Medicine of Naples, University of Naples “Federico II,” Via Pansini 5, 80131 Naples, Italy
5Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
6Department of Oral and Maxillofacial Sciences, University of Rome “La Sapienza”, Viale Regina Elena 287/A, 00161 Rome, Italy

Received 29 December 2011; Revised 13 March 2012; Accepted 14 March 2012

Academic Editor: Monica Fedele

Copyright © 2012 M. Di Domenico et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Krishnan and Z. Davidovitch, “On a path to unfolding the biological mechanisms of orthodontic tooth movement,” Journal of Dental Research, vol. 88, no. 7, pp. 597–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Krishnan, “Cellular, molecular, and tissue-level reactions to orthodontic force,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 129, no. 4, pp. 469.e1–469.e32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. P. Garlet, U. Coelho, J. S. Silva, and G. P. Garlet, “Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans,” European Journal of Oral Sciences, vol. 115, no. 5, pp. 355–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. W. R. Proffit, “Biologic basis of orthodontic therapy,” in Contemporary Orthodontics, W. R. Proffit and H. W. Fields, Eds., Mosby, St. Louis, Mo, USA, 3rd edition, 2000.
  5. A. Bletsa, E. Berggreen, and P. Brudvik, “Interleukin-1 and tumor necrosis factor-α expression during the early phases of orthodontic tooth movement in rats,” European Journal of Oral Sciences, vol. 114, no. 5, pp. 423–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. C. Teixeira, E. Khoo, J. Tran et al., “Cytokine expression and accelerated tooth movement,” Journal of Dental Research, vol. 89, no. 10, pp. 1135–1141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Baba, N. Kuroda, C. Arai, Y. Nakamura, and T. Sato, “Immunocompetent cells and cytokine expression in the rat periodontal ligament at the initial stage of orthodontic tooth movement,” Archives of Oral Biology, vol. 56, no. 5, pp. 466–473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Y. Lee, K. J. Lee, and H. S. Baik, “Expression of IL-1,MMP-9 and TIMP-1 on the pressure side of gingiva under orthodontic loading,” Angle Orthodontist, vol. 79, no. 4, pp. 733–739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Kim, H. M. Jin, K. Kim et al., “The mechanism of osteoclast differentiation induced by IL-1,” Journal of Immunology, vol. 183, no. 3, pp. 1862–1870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. R. Iwasaki, J. E. Haack, J. C. Nickel, R. A. Reinhardt, and T. M. Petro, “Human interleukin-1b and interleukin-1 receptor antagonist secretion and velocity of tooth movement,” Archives of Oral Biology, vol. 46, no. 2, pp. 185–189, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. L. R. Iwasaki, J. R. Chandler, D. B. Marx, J. P. Pandey, and J. C. Nickel, “IL-1 gene polymorphisms, secretion in GCF, and speed of human tooth orthodontic movement,” Orthodontics and Craniofacial Research, vol. 12, no. 2, pp. 129–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. T. Salla, S. R. A. Taddei, C. M. Queiroz-Junior, et al., “The effect of IL-1 receptor antagonist on orthodontic tooth movement in mice,” Archives of Oral Biology, vol. 57, no. 5, pp. 519–524, 2012.
  13. X. Yan, J. Chen, Y. Hao, Y. Wang, and L. Zhu, “Changes of caspase-1 after the application of orthodontic forces in the periodontal tissues of rats,” Angle Orthodontist, vol. 79, no. 6, pp. 1126–1132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Stack, K. Beaumont, P. D. Larsen et al., “IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients,” Journal of Immunology, vol. 175, no. 4, pp. 2630–2634, 2005. View at Scopus
  15. K. Rudolphi, N. Gerwin, N. Verzijl, P. van der Kraan, and W. van den Berg, “Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis,” Osteoarthritis and Cartilage, vol. 11, no. 10, pp. 738–746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Miyagawa, M. Chiba, H. Hayashi, and K. Igarashi, “Compressive force induces VEGF production in periodontal tissues,” Journal of Dental Research, vol. 88, no. 8, pp. 752–756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kaku, M. Motokawa, Y. Tohma et al., “VEGF and M-CSF levels in periodontal tissue during tooth movement,” Biomedical Research, vol. 29, no. 4, pp. 181–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kaku, S. Kohno, T. Kawata et al., “Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice,” Journal of Dental Research, vol. 80, no. 10, pp. 1880–1883, 2001. View at Scopus
  19. T. Kim, A. Handa, J. Iida, and S. Yoshida, “RANKL expression in rat periodontal ligament subjected to a continuous orthodontic force,” Archives of Oral Biology, vol. 52, no. 3, pp. 244–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Yamaguchi, “RANK/RANKL/OPG during orthodontic tooth movement,” Orthodontics and Craniofacial Research, vol. 12, no. 2, pp. 113–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. P. J. Brooks, D. Nilforoushan, M. F. Manolson, C. A. Simmons, and S. G. Gong, “Molecular markers of early orthodontic tooth movement,” Angle Orthodontist, vol. 79, no. 6, pp. 1108–1113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Uribe, Z. Kalajzic, J. Bibko et al., “Early effects of orthodontic forces on osteoblast differentiation in a novel mouse organ culture model,” Angle Orthodontist, vol. 81, no. 2, pp. 284–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Olson, F. Uribe, Z. Kalajzic, et al., “Orthodontic tooth movement causes decreased promoter expression of collagen type-1, bone sialoprotein and alpha-smooth muscle actin in the periodontal ligament,” Orthodontic Craniofacial Research, vol. 15, pp. 52–61, 2012.
  24. P. J. Brooks, A. F. Heckler, K. Wei, and S. G. Gong, “M-CSF accelerates orthodontic tooth movement by targeting preosteoclasts in mice,” Angle Orthodontist, vol. 81, no. 2, pp. 277–283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Ren, J. C. Maltha, and A. M. Kuijpers-Jagtman, “The rat as a model for orthodontic tooth movement—a critical review and a proposed solution,” European Journal of Orthodontics, vol. 26, no. 5, pp. 483–490, 2004. View at Publisher · View at Google Scholar · View at Scopus