About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 205818, 11 pages
http://dx.doi.org/10.1155/2012/205818
Research Article

Usefulness of FDG, MET and FLT-PET Studies for the Management of Human Gliomas

Department of Neurological Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan

Received 5 January 2012; Accepted 7 February 2012

Academic Editor: David J. Yang

Copyright © 2012 Keisuke Miyake et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Kelly, C. Daumas-Duport, D. B. Kispert, B. A. Kall, B. W. Scheithauer, and J. J. Illig, “Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms,” Journal of Neurosurgery, vol. 66, no. 6, pp. 865–874, 1987. View at Scopus
  2. H. J. Aronen, F. S. Pardo, D. N. Kennedy et al., “High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas,” Clinical Cancer Research, vol. 6, no. 6, pp. 2189–2200, 2000. View at Scopus
  3. W. Chen, T. Cloughesy, N. Kamdar et al., “Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG,” Journal of Nuclear Medicine, vol. 46, no. 6, pp. 945–952, 2005. View at Scopus
  4. S. Kim, J. K. Chung, S. H. Im et al., “11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 1, pp. 52–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. Price, “Advances in imaging low-grade gliomas,” Advances and Technical Standards in Neurosurgery, vol. 35, pp. 1–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Herholz, T. Hölzer, B. Bauer et al., “11C-methionine PET for differential diagnosis of low-grade gliomas,” Neurology, vol. 50, no. 5, pp. 1316–1322, 1998. View at Scopus
  7. L. W. Kracht, H. Miletic, S. Busch et al., “Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology,” Clinical Cancer Research, vol. 10, no. 21, pp. 7163–7170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Okubo, H. N. Zhen, N. Kawai, Y. Nishiyama, R. Haba, and T. Tamiya, “Correlation of l-methyl-11C-methionine (MET) uptake with l-type amino acid transporter 1 in human gliomas,” Journal of Neuro-Oncology, vol. 99, no. 2, pp. 217–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Ceyssens, K. van Laere, T. de Groot, J. Goffin, G. Bormans, and L. Mortelmans, “[11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence,” American Journal of Neuroradiology, vol. 27, no. 7, pp. 1432–1437, 2006. View at Scopus
  10. T. Hatakeyama, N. Kawai, Y. Nishiyama et al., “11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 11, pp. 2009–2017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Nariai, Y. Tanaka, H. Wakimoto et al., “Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma,” Journal of Neurosurgery, vol. 103, no. 3, pp. 498–507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Ishii, T. Ogawa, J. Hatazawa et al., “High L-methyl-[11C]methionine uptake in brain abscess: a PET study,” Journal of Computer Assisted Tomography, vol. 17, no. 4, pp. 660–661, 1993. View at Scopus
  13. M. Nakagawa, Y. Kuwabara, M. Sasaki et al., “11C-methionine uptake in cerebrovascular disease: a comparison with 18F-FDG PET and 99mTc-HMPAO SPECT,” Annals of Nuclear Medicine, vol. 16, no. 3, pp. 207–211, 2002. View at Scopus
  14. S. J. Choi, J. S. Kim, J. H. Kim, et al., “[18F]3-deoxy-3-fluorothymidine PET for the diagnosis and grading of brain tumors,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 6, pp. 653–659, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Saga, H. Kawashima, N. Araki et al., “Evaluation of primary brain tumors with FLT-PET: usefulness and limitations,” Clinical Nuclear Medicine, vol. 31, no. 12, pp. 774–780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. F. Shields, J. R. Grierson, B. M. Dohmen et al., “Imaging proliferation in vivo with [F-18]FLT and positron emission tomography,” Nature Medicine, vol. 4, no. 11, pp. 1334–1336, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. L. B. Been, A. J. H. Suurmeijer, D. C. P. Cobben, P. L. Jager, H. J. Hoekstra, and P. H. Elsinga, “[18F]FLT-PET in oncology: current status and opportunities,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 12, pp. 1659–1672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. H. Jacobs, A. Thomas, L. W. Kracht et al., “18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors,” Journal of Nuclear Medicine, vol. 46, no. 12, pp. 1948–1958, 2005. View at Scopus
  19. W. Chen, S. Delaloye, D. H. S. Silverman et al., “Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study,” Journal of Clinical Oncology, vol. 25, no. 30, pp. 4714–4721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Ishiwata, C. Kasahara, K. Hatano, S. I. Ishii, and M. Senda, “Carbon-11 labeled ethionine and propionine as tumor detecting agents,” Annals of Nuclear Medicine, vol. 11, no. 2, pp. 115–122, 1997. View at Scopus
  21. K. Roessler, B. Gatterbauer, A. Becherer et al., “Surgical target selection in cerebral glioma surgery: linking methionine (MET) PET image fusion and neuronavigation,” Minimally Invasive Neurosurgery, vol. 50, no. 5, pp. 273–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Torii, N. Tsuyuguchi, J. Kawabe, I. Sunada, M. Hara, and S. Shiomi, “Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas,” Annals of Nuclear Medicine, vol. 19, no. 8, pp. 677–683, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Colavolpe, E. Guedj, P. Metellus et al., “FDG-PET to predict different patterns of progression in multicentric glioblastoma: a case report,” Journal of Neuro-Oncology, vol. 90, no. 1, pp. 47–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Herholz, D. Coope, and A. Jackson, “Metabolic and molecular imaging in neuro-oncology,” Lancet Neurology, vol. 6, no. 8, pp. 711–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. La Fougère, B. Suchorska, P. Bartenstein, F. W. Kreth, and J. C. Tonn, “Molecular imaging of gliomas with PET: opportunities and limitations,” Neuro-Oncology, vol. 13, no. 8, pp. 806–819, 2011. View at Publisher · View at Google Scholar
  26. R. Talanow, P. Ruggieri, A. Alexopoulos, D. Lachhwani, and G. Wu, “PET manifestation in different types of pathology in epilepsy,” Clinical Nuclear Medicine, vol. 34, no. 10, pp. 670–674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Phi, J. C. Paeng, H. S. Lee et al., “Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine pet,” Journal of Nuclear Medicine, vol. 51, no. 5, pp. 728–734, 2010. View at Scopus
  28. N. Kawai, T. Hatakeyama, T. Tamiya, et al., “Is it possible to differentiate between radiation necrosis and recurrence of brain tumors using positron emission tomography?” Progress in Computed Imaging, vol. 30, no. 1, pp. 1–11, 2008.
  29. N. Kawai, M. Kagawa, T. Hatakeyama et al., “11C-methionine positron emission tomography in brain tumor,” Neurological Surgery, vol. 36, no. 10, pp. 847–859, 2008. View at Scopus
  30. Y. Okita, M. Kinoshita, T. Goto et al., “11C-methionine uptake correlates with tumor cell density rather than with microvessel density in glioma: a stereotactic image-histology comparison,” NeuroImage, vol. 49, no. 4, pp. 2977–2982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Terakawa, N. Tsuyuguchi, Y. Iwai et al., “Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy,” Journal of Nuclear Medicine, vol. 49, no. 5, pp. 694–699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Kinoshita, T. Goto, H. Arita, et al., “Imaging 18F-fluorodeoxy glucose/18C-methionine uptake decoupling for identification of tumor cell infiltration in peritumoral brain edema,” Journal of Neuro-Oncology, vol. 106, no. 2, pp. 417–425, 2012. View at Publisher · View at Google Scholar