About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 206918, 8 pages
http://dx.doi.org/10.1155/2012/206918
Review Article

Overview of Plant-Made Vaccine Antigens against Malaria

Laboratorio de Biotecnología Vegetal, Instituto Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Camino de Circunvalación km 8.2, 7130 Buenos Aires, Argentina

Received 17 March 2012; Revised 22 May 2012; Accepted 23 May 2012

Academic Editor: Diego Gomez-Casati

Copyright © 2012 Marina Clemente and Mariana G. Corigliano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. V. S. Hill, “Vaccines against malaria,” Philosophical Transactions of the Royal Society of London Series B, vol. 366, pp. 2806–2814, 2011.
  2. L. Schwartz, G. V. Brown, B. Genton, and V. S. Moorthy, “A review of malaria vaccine clinical projects based on the WHO rainbow table,” Malaria Journal, vol. 11, no. 1, p. 11, 2012.
  3. 2012, http://www.who.int/mediacentre/factsheets/fs094/es/index.html.
  4. M. H. Rodríguez-López, “Avances en el desarrollo de vacunas contra la malaria,” Revista Biomédica, vol. 19, no. 1, pp. 61–79, 2008.
  5. R. N. Price, E. Tjitra, C. A. Guerra, S. Yeung, N. J. White, and N. M. Anstey, “Vivax malaria: neglected and not benign,” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 6, pp. 79–87, 2007. View at Scopus
  6. R. N. Price, N. M. Douglas, and N. M. Anstey, “New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance,” Current Opinion in Infectious Diseases, vol. 22, no. 5, pp. 430–435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. http://www.who.int/vaccine_research/diseases/soa_parasitic/en/index.html.
  8. B. M. Greenwood and G. A. T. Targett, “Malaria vaccines and the new malaria agenda,” Clinical Microbiology and Infection, vol. 17, no. 11, pp. 1600–1607, 2011.
  9. R. F. Anders, C. G. Adda, M. Foley, and R. S. Norton, “Recombinant protein vaccines against the asexual blood-stages of Plasmodium falciparum,” Human Vaccines, vol. 6, no. 1, 2010. View at Scopus
  10. M. Arévalo-Herrera, Y. Solarte, C. Marin, et al., “Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America,” Memórias Instituto Oswaldo Cruz, vol. 106, no. 1, pp. 202–211, 2011.
  11. B. M. Greenwood, K. Bojang, C. J. M. Whitty, and G. A. T. Targett, “Malaria,” Lancet, vol. 365, no. 9469, pp. 1487–1498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. M. Greenwood, D. A. Fidock, D. E. Kyle et al., “Malaria: progress, perils, and prospects for eradication,” Journal of Clinical Investigation, vol. 118, no. 4, pp. 1266–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. A. Smith, N. Chitnis, O. J. T. Briët, and M. Tanner, “Uses of mosquito-stage transmission-blocking vaccines against Plasmodium falciparum,” Trends in Parasitology, vol. 27, no. 5, pp. 190–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. P. Girard, Z. H. Reed, M. Friede, and M. P. Kieny, “A review of human vaccine research and development: malaria,” Vaccine, vol. 25, no. 9, pp. 1567–1580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Targett and B. M. Greenwood, “Malaria vaccines and their potential role in the elimination of malaria,” Malaria Journal, vol. 7, no. 1, article S10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. H. Reed, M. Friede, and M. P. Kieny, “Malaria vaccine development: progress and challenges,” Current Molecular Medicine, vol. 6, no. 2, pp. 231–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. V. Hill, “Vaccines against malaria,” Philosophical Transactions of the Royal Society B, vol. 366, no. 1579, pp. 2806–2814, 2011.
  18. E. Jongert, C. W. Roberts, N. Gargano, E. Förster-Wald, and E. Petersen, “Vaccines against Toxoplasma gondii: challenges and opportunities,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 2, pp. 252–266, 2009. View at Scopus
  19. E. A. Innes, P. M. Bartley, M. Rocchi et al., “Developing vaccines to control protozoan parasites in ruminants: dead or alive?” Veterinary Parasitology, vol. 180, no. 1-2, pp. 155–163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Daniell, N. D. Singh, H. Mason, and S. J. Streatfield, “Plant-made vaccine antigens and biopharmaceuticals,” Trends in Plant Science, vol. 14, no. 12, pp. 669–679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Tiwari, P. C. Verma, P. K. Singh, and R. Tuli, “Plants as bioreactors for the production of vaccine antigens,” Biotechnology Advances, vol. 27, no. 4, pp. 449–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Davoodi-Semiromi, N. Samson, and H. Daniell, “The green vaccine: a global strategy to combat infectious and outoimmune diseases,” Human Vaccines, vol. 5, no. 7, pp. 488–493, 2009. View at Scopus
  23. A. G. Lössl and M. T. Waheed, “Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes,” Plant Biotechnology Journal, vol. 9, no. 5, pp. 527–539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Wang, L. Kedzierski, S. L. Wesselingh, and R. L. Coppel, “Oral immunization with a recombinant malaria protein induces conformational antibodies and protects mice against lethal malaria,” Infection and Immunity, vol. 71, no. 5, pp. 2356–2364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Wang, D. E. Webster, A. E. Campbell, I. B. Dry, S. L. Wesselingh, and R. L. Coppel, “Immunogenicity of Plasmodium yoelii merozoite surface protein 4/5 produced in transgenic plants,” International Journal for Parasitology, vol. 38, no. 1, pp. 103–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. H. Seon, S. Szarka, and M. M. Moloney, “A unique strategy for recovering recombinant proteins from molecular farming: affinity capture on engineered oilbodies,” Plant Biotechnology Journal, pp. 95–101, 2002.
  27. T. J. Menkhaus, Y. Bai, C. Zhang, Z. L. Nikolov, and C. E. Glatz, “Considerations for the recovery of recombinant proteins from plants,” Biotechnology Progress, vol. 20, no. 4, pp. 1001–1014, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Yusibov and S. Rabindran, “Recent progress in the development of plant-derived vaccines,” Expert Review of Vaccines, vol. 7, no. 8, pp. 1173–1183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. A. Goldstein and J. A. Thomas, “Biopharmaceuticals derived from genetically modified plants,” QJM, vol. 97, no. 11, pp. 705–716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Ghosh, P. Malhotra, P. V. Lalitha, S. Guha-Mukherjee, and V. S. Chauhan, “Expression of Plasmodium falciparum C-terminal region of merozoite surface protein ( PfMSP1 19 ), a potential malaria vaccine candidate, in tobacco,” Plant Science, vol. 162, pp. 335–343, 2002.
  31. M. Clemente, R. Curilovic, A. Sassone, A. Zelada, S. O. Angel, and A. N. Mentaberry, “Production of the main surface antigen of Toxoplasma gondii in tobacco leaves and analysis of its antigenicity and immunogenicity,” Molecular Biotechnology, vol. 30, no. 1, pp. 41–49, 2005. View at Scopus
  32. G. Ferraro, M. L. Becher, S. O. Angel, A. Zelada, A. N. Mentaberry, and M. Clemente, “Efficient expression of a Toxoplasma gondii dense granule Gra4 antigen in tobacco leaves,” Experimental Parasitology, vol. 120, no. 1, pp. 118–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. E. Webster, L. Wang, M. Mulcair et al., “Production and characterization of an orally immunogenic Plasmodium antigen in plants using a virus-based expression system,” Plant Biotechnology Journal, vol. 7, no. 9, pp. 846–855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Laguía-Becher, V. Martín, M. Kraemer et al., “Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice,” BMC Biotechnology, vol. 10, article 52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. O. S. Lau, D. W. K. Ng, W. W. Chan, S. P. Chang, and S. S. Sun, “Production of the 42-kDa fragment of Plasmodium falciparum merozoite surface protein 1, a leading malaria vaccine antigen, in Arabidopsis thaliana seeds,” Plant Biotechnology Journal, vol. 8, no. 9, pp. 994–1004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Davoodi-Semiromi, M. Schreiber, S. Nalapalli et al., “Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery,” Plant Biotechnology Journal, vol. 8, no. 2, pp. 223–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. E. Farrance, J. A. Chichester, K. Musiychuk et al., “Antibodies to plant-produced Plasmodium falciparum sexual stage protein Pfs25 exhibit transmission blocking activity,” Human Vaccines, vol. 7, pp. 191–198, 2011. View at Publisher · View at Google Scholar
  38. C. E. Farrance, A. Rhee, R. M. Jones et al., “A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum,” Clinical and Vaccine Immunology, vol. 18, no. 8, pp. 1351–1357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Lee, H. H. Kim, K. Mi Choi et al., “Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus,” Malaria Journal, vol. 10, article 106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. P. M. Drake and H. Thangaraj, “Molecular farming, patents and access to medicines,” Expert Review of Vaccines, vol. 9, no. 8, pp. 811–819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Penney, D. R. Thomas, S. S. Deen, and A. M. Walmsley, “Plant-made vaccines in support of the Millennium Development Goals,” Plant Cell Reports, vol. 30, no. 5, pp. 789–798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Yusibov, S. J. Streatfield, and N. Kushnir, “Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond,” Human Vaccines, vol. 7, no. 3, pp. 313–321, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Paul and J. K. C. Ma, “Plant-made immunogens and effective delivery strategies,” Expert Review of Vaccines, vol. 9, no. 8, pp. 821–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. http://www.dowagro.com/.
  45. S. J. Streatfield, “Mucosal immunization using recombinant plant-based oral vaccines,” Methods, vol. 38, no. 2, pp. 150–157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. C. A. Hayden, S. J. Streatfield, and B. J. Lamphear, “Bioencapsulation of the hepatitis B surface antigen and its use as an effective oral immunogen,” Vaccine, vol. 30, no. 19, pp. 2937–2942, 2012.
  47. J. Kapusta, A. Modelska, M. Figlerowicz et al., “A plant-derived edible vaccine against hepatitis B virus,” FASEB Journal, vol. 13, no. 13, pp. 1796–1799, 1999. View at Scopus
  48. X. L. Jiang, Z. M. He, Z. Q. Peng, Y. Qi, Q. Chen, and S. Y. Yu, “Cholera toxin B protein in transgenic tomato fruit induces systemic immune response in mice,” Transgenic Research, vol. 16, no. 2, pp. 169–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Guetard, R. Greco, M. Cervantes Gonzalez et al., “Immunogenicity and tolerance following HIV-1/HBV plant-based oral vaccine administration,” Vaccine, vol. 26, no. 35, pp. 4477–4485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Kostrzak, M. Cervantes Gonzalez, D. Guetard et al., “Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells,” Vaccine, vol. 27, no. 35, pp. 4798–4807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. K. A. Pasquevich, A. E. Ibañez, L. M. Coria et al., “An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice,” PLoS ONE, vol. 6, no. 1, Article ID e16203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Pniewski, J. Kapusta, P. Bociag et al., “Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation,” Journal of Applied Genetics, vol. 52, no. 2, pp. 125–136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. R. E. Soria-Guerra, L. Moreno-Fierros, and S. Rosales-Mendoza, “Two decades of plant-based candidate vaccines: a review of the chimeric protein approaches,” Plant Cell Reports, vol. 30, no. 8, pp. 1367–1382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Granell, A. Fernándezdel-Carmen, and D. Orzáez, “In planta production of plant-derived and non-plant-derived adjuvants,” Expert Review of Vaccines, vol. 9, no. 8, pp. 843–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Wang, C. G. Kelly, M. Singh et al., “Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70,” Journal of Immunology, vol. 169, no. 5, pp. 2422–2429, 2002. View at Scopus
  56. P. V. Licciardi and J. R. Underwood, “Plant-derived medicines: a novel class of immunological adjuvants,” International Immunopharmacology, vol. 11, no. 3, pp. 390–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. D. Crompton, S. K. Pierce, and L. H. Miller, “Advances and challenges in malaria vaccine development,” Journal of Clinical Investigation, vol. 120, no. 12, pp. 4168–4178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. R. D. Ellis, I. Sagara, O. Doumbo, and Y. Wu, “Blood stage vaccines for Plasmodium falciparum: current status and the way forward,” Human Vaccines, vol. 6, no. 8, pp. 627–634, 2010. View at Scopus
  59. A. L. Goodman and S. J. Draper, “Blood-stage malaria vaccines—recent progress and future challenges,” Annals of Tropical Medicine and Parasitology, vol. 104, no. 3, pp. 189–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Maher, “Malaria vaccine gets shot in the arm from tests,” Nature, vol. 456, no. 7223, pp. 680–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. J. Blackman and A. A. Holder, “Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1,” Molecular and Biochemical Parasitology, vol. 50, no. 2, pp. 307–315, 1992. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Kumar, A. Yadava, D. B. Keister et al., “Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys,” Molecular Medicine, vol. 1, no. 3, pp. 325–332, 1995. View at Scopus
  63. S. P. Chang, S. E. Case, W. L. Gosnell et al., “A recombinant baculovirus 42-kilodalton C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 protects Aotus monkeys against malaria,” Infection and Immunity, vol. 64, no. 1, pp. 253–261, 1996. View at Scopus
  64. C. A. Darko, E. Angov, W. E. Collins et al., “The clinical-grade 42-kilodalton fragment of merozoite surface protein 1 of Plasmodium falciparum strain FVO expressed in Escherichia coli protects Aotus nancymai against challenge with homologous erythrocytic-stage parasites,” Infection and Immunity, vol. 73, no. 1, pp. 287–297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Ma, L. Wang, D. E. Webster, A. E. Campbell, and R. L. Coppel, “Production, characterisation and immunogenicity of a plant-made Plasmodium antigen-the 19 kDa C-terminal fragment of Plasmodium yoelii merozoite surface protein 1,” Applied Microbiology and Biotechnology, vol. 94, no. 1, pp. 151–161, 2011.
  66. L. Frigerio, M. De Virgilio, A. Prada, F. Faoro, and A. Vitale, “Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide,” Plant Cell, vol. 10, no. 6, pp. 1031–1042, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Kedzierski, C. G. Black, and R. L. Coppel, “Immunization with recombinant Plasmodium yoelii merozoite surface protein 4/5 protects mice against lethal challenge,” Infection and Immunity, vol. 68, no. 10, pp. 6034–6037, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Kedzierski, C. G. Black, A. W. Stowers, M. W. Goschnick, D. C. Kaslow, and R. L. Coppel, “Comparison of the protective efficacy of yeast-derived and Escherichia coli-derived recombinant merozoite surface protein 4/5 against lethal challenge by Plasmodium yoelii,” Vaccine, vol. 19, no. 32, pp. 4661–4668, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Gleba, V. Klimyuk, and S. Marillonnet, “Magnifection—a new platform for expressing recombinant vaccines in plants,” Vaccine, vol. 23, no. 17-18, pp. 2042–2048, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Suzue and R. A. Young, “Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24,” Journal of Immunology, vol. 156, no. 2, pp. 873–879, 1996. View at Scopus
  71. P. C. Echeverria, N. de Miguel, M. Costas, and S. O. Angel, “Potent antigen-specific immunity to Toxoplasma gondii in adjuvant-free vaccination system using Rop2-Leishmania infantum Hsp83 fusion protein,” Vaccine, vol. 24, no. 19, pp. 4102–4110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. G. Corigliano, A. Maglioco, M. L. Becher et al., “Plant Hsp90 proteins interact with B-cells and stimulate their proliferation,” PLoS ONE, vol. 6, no. 6, Article ID e21231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. R. E. Sinden, A. Talman, S. R. Marques, M. N. Wass, and M. J. E. Sternberg, “The flagellum in malarial parasites,” Current Opinion in Microbiology, vol. 13, no. 4, pp. 491–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Wu, R. D. Ellis, D. Shaffer et al., “Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs 25 formulated with montanide ISA 51,” PLoS ONE, vol. 3, no. 7, Article ID e2636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Pradel, “Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies,” Parasitology, vol. 134, no. 14, pp. 1911–1929, 2007. View at Publisher · View at Google Scholar · View at Scopus