About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 259693, 9 pages
http://dx.doi.org/10.1155/2012/259693
Research Article

All-trans-Retinoic Acid Ameliorated High Fat Diet-Induced Atherosclerosis in Rabbits by Inhibiting Platelet Activation and Inflammation

1Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
2Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China
3Laboratory of Molecular Biology, Anhui Medical University, Anhui 230032, China

Received 2 November 2011; Revised 21 December 2011; Accepted 21 December 2011

Academic Editor: Saulius Butenas

Copyright © 2012 Birong Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. I. Axel, A. Frigge, J. Dittmann et al., “All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells,” Cardiovascular Research, vol. 49, no. 4, pp. 851–862, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Miano, S. Topouzis, M. W. Majesky, and E. N. Olson, “Retinoid receptor expression and all-trans retinoic acid-mediated growth inhibition in vascular smooth muscle cells,” Circulation, vol. 93, no. 10, pp. 1886–1895, 1996. View at Scopus
  3. H. Ou, J. Haendeler, M. R. Aebly et al., “Retinoic acid-induced tissue transglutaminase and apoptosis in vascular smooth muscle cells,” Circulation Research, vol. 87, no. 10, pp. 881–887, 2000. View at Scopus
  4. P. J. Wiegman, W. L. Barry, J. A. McPherson et al., “All-trans-retinoic acid limits restenosis after balloon angioplasty in the focally atherosclerotic rabbit: a favorable effect on vessel remodeling,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 1, pp. 89–95, 2000. View at Scopus
  5. C. Herdeg, M. Oberhoff, A. Baumbach et al., “Effects of local all-trans-retinoic acid delivery on experimental atherosclerosis in the rabbit carotid artery,” Cardiovascular Research, vol. 57, no. 2, pp. 544–553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Miano, L. A. Kelly, C. A. Artacho, T. A. Nuckolls, R. Piantedosi, and W. S. Blaner, “all-Trans-retinoic acid reduces neointimal formation and promotes favorable geometric remodeling of the rat carotid artery after balloon withdrawal injury,” Circulation, vol. 98, no. 12, pp. 1219–1227, 1998. View at Scopus
  7. A. J. Lusis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. C. J. L. Murray and A. D. Lopez, “Global mortality, disability, and the contribution of risk factors: global burden of disease study,” The Lancet, vol. 349, no. 9063, pp. 1436–1442, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Riba, A. Nicolaou, M. Troxler, S. Homer-Vaniasinkam, and K. M. Naseem, “Altered platelet reactivity in peripheral vascular disease complicated with elevated plasma homocysteine levels,” Atherosclerosis, vol. 175, no. 1, pp. 69–75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Y. Hu, Y. L. Li, C. H. Jiang, Z. Q. Liu, S. L. Qu, and Y. M. Huang, “Comparison of lycopene and fluvastatin effects on atherosclerosis induced by a high-fat diet in rabbits,” Nutrition, vol. 24, no. 10, pp. 1030–1038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. P. C. Burger and D. D. Wagner, “Platelet P-selectin facilitates atherosclerotic lesion development,” Blood, vol. 101, no. 7, pp. 2661–2666, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Zhai, J. Wu, X. Xu et al., “Fibrinogen controls human platelet fibronectin internalization and cell-surface retention,” Journal of Thrombosis and Haemostasis, vol. 5, no. 8, pp. 1740–1746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. N. George, R. M. Lyons, and R. K. Morgan, “Membrane changes associated with platelet activation. Exposure of actin on the platelet surface after thrombin-induced secretion,” Journal of Clinical Investigation, vol. 66, no. 1, pp. 1–9, 1980. View at Scopus
  15. J. Öckinger, P. Stridh, A. D. Beyeen et al., “Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis,” Genes and Immunity, vol. 11, no. 2, pp. 142–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Rezaee, A. Maas, M. P. M. De Maat, J. H. Verheijen, and J. Koopman, “Effect of genetic background and diet on plasma fibrinogen in mice. Possible relation with susceptibility to atherosclerosis,” Atherosclerosis, vol. 164, no. 1, pp. 37–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Yang, S. Lang, Z. Zhai et al., “Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression,” Blood, vol. 114, no. 2, pp. 425–436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Li, M. Dai, and W. Jia, “Paeonol attenuates high-fat-diet-induced atherosclerosis in rabbits by anti-inflammatory activity,” Planta Medica, vol. 75, no. 1, pp. 7–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Park, D. G. Lee, S. W. Kim, and J. S. Paick, “Dimethylarginine dimethylaminohydrolase in rat penile tissue: reduced enzyme activity is responsible for erectile dysfunction in a rat model of atherosclerosis,” International Journal of Impotence Research, vol. 21, no. 4, pp. 228–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Papageorgiou, D. Tousoulis, G. Siasos, and C. Stefanadis, “Is fibrinogen a marker of inflammation in coronary artery disease?” Hellenic Journal of Cardiology, vol. 51, no. 1, pp. 1–9, 2010. View at Scopus
  21. M. J. Benson, K. Pino-Lagos, M. Rosemblatt, and R. J. Noelle, “All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1765–1774, 2007. View at Publisher · View at Google Scholar
  22. M. S. Tallman, J. W. Andersen, C. A. Schiffer et al., “All-trans-retinoic acid in acute promyelocytic leukemia,” New England Journal of Medicine, vol. 337, no. 15, pp. 1021–1028, 1997. View at Publisher · View at Google Scholar
  23. M. S. Tallman, J. W. Andersen, C. A. Schiffer et al., “All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol,” Blood, vol. 100, no. 13, pp. 4298–4302, 2002. View at Publisher · View at Google Scholar
  24. S. Tehrani, F. Mobarrez, A. Antovic et al., “Atorvastatin has antithrombotic effects in patients with type 1 diabetes and dyslipidemia,” Thrombosis Research, vol. 126, no. 3, pp. e225–e231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ramström, K. V. Öberg, F. Åkerström, C. Enström, and T. L. Lindahl, “Platelet PAR1 receptor density-correlation to platelet activation response and changes in exposure after platelet activation,” Thrombosis Research, vol. 121, no. 5, pp. 681–688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Schwertz, G. A. Zimmerman, and A. S. Weyrich, “Fibrinogen selects selectins,” Blood, vol. 114, no. 2, p. 234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Zhai, J. Wu, X. Xu, et al., “From mice to men: lessons from intravital microscopy thrombosis model and hypofibrinogenemia patients-roles of vWF, fibrinogen, and fibronectin in thrombus formation,” National Research Forum for Young Investigators in Circulatory and Respiratory Health May, pp. 6–9, 2004.
  28. F. K. Keating, H. L. Dauerman, D. A. Whitaker, B. E. Sobel, and D. J. Schneider, “Increased expression of platelet P-selectin and formation of platelet-leukocyte aggregates in blood from patients treated with unfractionated heparin plus eptifibatide compared with bivalirudin,” Thrombosis Research, vol. 118, no. 3, pp. 361–369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Xu, J. Wu, Z. Zhai et al., “A novel fibrinogen Bβ chain framshift mutation in a patient with severe congenital hypofibrinogenaemia,” Thrombosis and Haemostasis, vol. 95, no. 6, pp. 931–935, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. K. J. Woollard and J. Chin-Dusting, “Therapeutic targeting of P-selectin in atherosclerosis,” Inflammation and Allergy, vol. 6, no. 1, pp. 69–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Tailleux, A. Gozzo, G. Torpier et al., “Increased susceptibility of low-density lipoprotein to ex vivo oxidation in mice transgenic for human apolipoprotein B treated with 1 melatonin-related compound is not associated with atherosclerosis progression,” Journal of Cardiovascular Pharmacology, vol. 46, no. 3, pp. 241–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Witt-Enderby, N. M. Radio, J. S. Doctor, and V. L. Davis, “Therapeutic treatments potentially mediated by melatonin receptors: potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy,” Journal of Pineal Research, vol. 41, no. 4, pp. 297–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. C. Barreto, N. Y. Maeda, R. P. S. Soares, C. Cícero, and A. A. Lopes, “Rosuvastatin and vascular dysfunction markers in pulmonary arterial hypertension: a placebo-controlled study,” Brazilian Journal of Medical and Biological Research, vol. 41, no. 8, pp. 657–663, 2008. View at Scopus
  34. R. Kleemann, H. M. G. Princen, J. J. Emeis et al., “Rosuvastatin reduces atherosclerosis development beyond and independent of its plasma cholesterol-lowering effect in APOE*3-Leiden transgenic mice: evidence for antiinflammatory effects of rosuvastatin,” Circulation, vol. 108, no. 11, pp. 1368–1374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. T. J. Stalker, A. M. Lefer, and R. Scalia, “A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid,” British Journal of Pharmacology, vol. 133, no. 3, pp. 406–412, 2001. View at Scopus
  36. Z. S. Huang, C. L. Zeng, L. J. Zhu, L. Jiang, N. Li, and H. Hu, “Salvianolic acid A inhibits platelet activation and arterial thrombosis via inhibition of phosphoinositide 3-kinase,” Journal of Thrombosis and Haemostasis, vol. 8, no. 6, pp. 1383–1393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. M. Wuttge, A. Romert, U. Eriksson, H. Törmä, G. K. Hansson, and A. Sirsjö, “Induction of CD36 by all-trans retinoic acid: retinoic acid receptor signaling in the pathogenesis of atherosclerosis,” The FASEB Journal, vol. 15, no. 7, pp. 1221–1223, 2001. View at Scopus