About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 260983, 13 pages
http://dx.doi.org/10.1155/2012/260983
Research Article

CD73 Is Critical for the Resolution of Murine Colonic Inflammation

1Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, C5 149 VMC, Ithaca, NY 14853, USA
2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 14 May 2012; Revised 7 July 2012; Accepted 11 July 2012

Academic Editor: Linda F. Thompson

Copyright © 2012 Margaret S. Bynoe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Lakatos and L. S. Kiss, “Is the disease course predictable in inflammatory bowel diseases?” World Journal of Gastroenterology, vol. 16, no. 21, pp. 2591–2599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. R. Mahida, “Microbial-gut interactions in health and disease. Epithelial cell responses,” Best Practice & Research Clinical Gastroenterology, vol. 18, no. 2, pp. 241–253, 2004. View at Publisher · View at Google Scholar
  3. Y. R. Mahida and V. E. Rolfe, “Host-bacterial interactions in inflammatory bowel disease,” Clinical Science, vol. 107, no. 4, pp. 331–341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Munkholm, E. Langholz, D. Hollander et al., “Intestinal permeability in patients with Crohn's disease and ulcerative colitis and their first degree relatives,” Gut, vol. 35, no. 1, pp. 68–72, 1994. View at Scopus
  5. B. Sonier, C. Patrick, P. Ajjikuttira, and F. W. Scott, “Intestinal immune regulation as a potential diet-modifiable feature of gut inflammation and autoimmunity,” International Reviews of Immunology, vol. 28, no. 6, pp. 414–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Newman, M. S. Silverberg, X. Gu et al., “CARD15 and HLA DRB1 alleles influence susceptibility and disease localization in Crohn's disease,” American Journal of Gastroenterology, vol. 99, no. 2, pp. 306–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Brant and Y. Y. Shugart, “Inflammatory bowel disease gene hunting by linkage analysis: rationale, methodology, and present status of the field,” Inflammatory Bowel Diseases, vol. 10, no. 3, pp. 300–311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. R. Turner, “Intestinal mucosal barrier function in health and disease,” Nature Reviews Immunology, vol. 9, no. 11, pp. 799–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Bjarnason, A. MacPherson, and D. Hollander, “Intestinal permeability: an overview,” Gastroenterology, vol. 108, no. 5, pp. 1566–1581, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. D. J. Friedman, B. M. Künzli, Y. I. A-Rahim et al., “CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16788–16793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. N. A. Louis, A. M. Robinson, C. F. MacManus, J. Karhausen, M. Scully, and S. P. Colgan, “Control of IFN-αA by CD73: implications for mucosal inflammation,” Journal of Immunology, vol. 180, no. 6, pp. 4246–4255, 2008. View at Scopus
  12. Z. Selmeczy, B. Csóka, P. Pacher, E. S. Vizi, and G. Haskó, “The adenosine A2A receptor agonist CGS 21680 fails to ameliorate the course of dextran sulphate-induced colitis in mice,” Inflammation Research, vol. 56, no. 5, pp. 204–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Cruz, A. Rinna, H. J. Forman, A. L. M. Ventura, P. M. Persechini, and D. M. Ojcius, “ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages,” The Journal of Biological Chemistry, vol. 282, no. 5, pp. 2871–2879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Haskó, J. Linden, B. Cronstein, and P. Pacher, “Adenosine receptors: therapeutic aspects for inflammatory and immune diseases,” Nature Reviews Drug Discovery, vol. 7, no. 9, pp. 759–770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Airas, J. Niemelä, M. Salmi, T. Puurunen, D. J. Smith, and S. Jalkanen, “Differential regulation and function of CD73, a glycosyl- phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells,” Journal of Cell Biology, vol. 136, no. 2, pp. 421–431, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Antonioli, M. Fornai, R. Colucci et al., “Pharmacological modulation of adenosine system: novel options for treatment of inflammatory bowel diseases,” Inflammatory Bowel Diseases, vol. 14, no. 4, pp. 566–574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Gessi, S. Merighi, K. Varani et al., “Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A3 adenosine subtype,” Journal of Cellular Physiology, vol. 211, no. 3, pp. 826–836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. L. Hart, M. Henn, D. Köhler et al., “Role of extracellular nucleotide phosphohydrolysis in intestinal ischemia-reperfusion injury,” The FASEB Journal, vol. 22, no. 8, pp. 2784–2797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Synnestvedt, G. T. Furuta, K. M. Comerford et al., “Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia,” Journal of Clinical Investigation, vol. 110, no. 7, pp. 993–1002, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Deaglio, K. M. Dwyer, W. Gao et al., “Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression,” Journal of Experimental Medicine, vol. 204, no. 6, pp. 1257–1265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Odashima, G. Bamias, J. Rivera-Nieves et al., “Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease,” Gastroenterology, vol. 129, no. 1, pp. 26–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Siegmund, F. Rieder, S. Albrich et al., “Adenosine kinase inhibitor GP515 improves experimental colitis in mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 296, no. 1, pp. 99–105, 2001. View at Scopus
  23. L. F. Thompson, H. K. Eltzschig, J. C. Ibla et al., “Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia,” Journal of Experimental Medicine, vol. 200, no. 11, pp. 1395–1405, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. C. G. Whittem, A. D. Williams, and C. S. Williams, “Murine Colitis modeling using Dextran Sulfate Sodium (DSS),” JoVE: Journal of Visualized Experiments, no. 35, article e1652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Obata, D. Takahashi, M. Ebisawa et al., “Epithelial cell-intrinsic Notch signaling plays an essential role in the maintenance of gut immune homeostasis,” Journal of Immunology, vol. 188, no. 5, pp. 2427–2436, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. H. Mills, L. Alabanza, B. B. Weksler, P. O. Couraud, I. A. Romero, and M. S. Bynoe, “Human brain endothelial cells are responsive to adenosine receptor activation,” Purinergic Signalling, vol. 7, no. 2, pp. 265–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Powrie, “T cells in inflammatory bowel disease: protective and pathogenic roles,” Immunity, vol. 3, no. 2, pp. 171–174, 1995. View at Scopus
  28. F. Powrie, M. W. Leach, S. Mauze, L. B. Caddle, and R. L. Coffman, “Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice,” International Immunology, vol. 5, no. 11, pp. 1461–1471, 1993. View at Scopus
  29. J. H. Mills, L. F. Thompson, C. Mueller et al., “CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 27, pp. 9325–9330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. P. Colgan, H. K. Eltzschig, T. Eckle, and L. F. Thompson, “Physiological roles for ecto-5′-nucleotidase (CD73),” Purinergic Signalling, vol. 2, no. 2, pp. 351–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. I. Ivanov, A. Nusrat, and C. A. Parkos, “The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption,” Novartis Foundation Symposium, vol. 263, pp. 115–124, 2004. View at Scopus
  32. G. Rogler and T. Andus, “Cytokines in inflammatory bowel disease,” World Journal of Surgery, vol. 22, no. 4, pp. 382–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kimura, S. Teranishi, and T. Nishida, “Interleukin-1β-induced disruption of barrier function in cultured human corneal epithelial cells,” Investigative Ophthalmology and Visual Science, vol. 50, no. 2, pp. 597–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. A. Beg, T. S. Finco, P. V. Nantermet, and A. S. Baldwin Jr., “Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation,” Molecular and Cellular Biology, vol. 13, no. 6, pp. 3301–3310, 1993. View at Scopus
  35. A. Kaser, S. Zeissig, and R. S. Blumberg, “Inflammatory bowel disease,” Annual Review of Immunology, vol. 28, pp. 573–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Morello, K. Ito, S. Yamamura et al., “IL-1β and TNF-α regulation of the adenosine receptor (A 2A) expression: differential requirement for NF-κB binding to the proximal promoter,” Journal of Immunology, vol. 177, no. 10, pp. 7173–7183, 2006. View at Scopus
  37. D. R. Clayburgh, L. Shen, and J. R. Turner, “A porous defense: the leaky epithelial barrier in intestinal disease,” Laboratory Investigation, vol. 84, no. 3, pp. 282–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. McGuckin, R. Eri, L. A. Simms, T. H. J. Florin, and G. Radford-Smith, “Intestinal barrier dysfunction in inflammatory bowel diseases,” Inflammatory Bowel Diseases, vol. 15, no. 1, pp. 100–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. G. Laukoetter, P. Nava, W. Y. Lee et al., “JAM-A regulates permeability and inflammation in the intestine in vivo,” Journal of Experimental Medicine, vol. 204, no. 13, pp. 3067–3076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Nell, S. Suerbaum, and C. Josenhans, “The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models,” Nature Reviews Microbiology, vol. 8, no. 8, pp. 564–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. T. Abreu, “Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function,” Nature Reviews Immunology, vol. 10, no. 2, pp. 131–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. H. Niess, “Role of gut-resident dendritic cells in inflammatory bowel disease,” Expert Review of Clinical Immunology, vol. 5, no. 4, pp. 451–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. P. N. Fries and P. J. Griebel, “Mucosal dendritic cell diversity in the gastrointestinal tract,” Cell and Tissue Research, vol. 343, no. 1, pp. 33–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Mavris and P. Sansonetti, “Microbial-gut interactions in health and disease. Epithelial cell responses,” Best Practice & Research Clinical Gastroenterology, vol. 18, no. 2, pp. 373–386, 2004. View at Publisher · View at Google Scholar
  45. M. Rescigno, “The intestinal epithelial barrier in the control of homeostasis and immunity,” Trends in Immunology, vol. 32, no. 6, pp. 256–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Wells, O. Rossia, M. Meijerink, and P. Van Baarlen, “Epithelial crosstalk at the microbiota-mucosal interface,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 4607–4614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. H. B. Jijon, J. Walker, F. Hoentjen et al., “Adenosine is a negative regulator of NF-κB and MAPK signaling in human intestinal epithelial cells,” Cellular Immunology, vol. 237, no. 2, pp. 86–95, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Lee, J. H. Mo, K. Katakura et al., “Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells,” Nature Cell Biology, vol. 8, no. 12, pp. 1327–1336, 2006. View at Publisher · View at Google Scholar · View at Scopus