About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 274150, 8 pages
http://dx.doi.org/10.1155/2012/274150
Review Article

Are Basophils Important Mediators for Helminth-Induced Th2 Immune Responses? A Debate

Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico

Received 27 May 2011; Accepted 8 December 2011

Academic Editor: Abhay R. Satoskar

Copyright © 2012 Sonia Leon-Cabrera and Ana Flisser. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Bungiro and M. Cappello, “Hookworm infection: new developments and prospects for control,” Current Opinion in Infectious Diseases, vol. 17, no. 5, pp. 421–426, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. Hotez, J. Bethony, M. E. Bottazzi, S. Brooker, D. Diemert, and A. Loukas, “New technologies for the control of human hookworm infection,” Trends in Parasitology, vol. 22, no. 7, pp. 327–331, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. K. A. Mowen and L. H. Glimcher, “Signaling pathways in Th2 development,” Immunological Reviews, vol. 202, pp. 203–222, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. R. M. Anthony, L. I. Rutitzky, J. F. Urban Jr., M. J. Stadecker, and W. C. Gause, “Protective immune mechanisms in helminth infection,” Nature Reviews Immunology, vol. 7, no. 12, pp. 975–987, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. A. Janeway Jr. and R. Medzhitov, “Innate immune recognition,” Annual Review of Immunology, vol. 20, pp. 197–216, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. C. L. Sokol, N. Q. Chu, S. Yu, S. A. Nish, T. M. Laufer, and R. Medzhitov, “Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response,” Nature Immunology, vol. 10, no. 7, pp. 713–720, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. T. Yoshimoto, K. Yasuda, H. Tanaka et al., “Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells,” Nature Immunology, vol. 10, no. 7, pp. 706–712, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. G. Perrigoue, S. A. Saenz, M. C. Siracusa et al., “MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity,” Nature Immunology, vol. 10, no. 7, pp. 697–705, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. G. Trinchieri, “Interleukin-12 and the regulation of innate resistance and adaptive immunity,” Nature Reviews Immunology, vol. 3, no. 2, pp. 133–146, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. E. V. Acosta-Rodriguez, G. Napolitani, A. Lanzavecchia, and F. Sallusto, “Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells,” Nature Immunology, vol. 8, no. 9, pp. 942–949, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. R. Maldonado-López, T. De Smedt, P. Michel et al., “CD8α+ and CD8α- Subclasses of dendritic cells direct the development of distinct T helper cells in vivo,” Journal of Experimental Medicine, vol. 189, no. 3, pp. 587–592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Perona-Wright, S. J. Jenkins, and A. S. MacDonald, “Dendritic cell activation and function in response to Schistosoma mansoni,” International Journal for Parasitology, vol. 36, no. 6, pp. 711–721, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. van der Kleij, E. Latz, J. F. H. M. Brouwers et al., “A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization,” The Journal of Biological Chemistry, vol. 277, no. 50, pp. 48122–48129, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. B. Everts, G. Perona-Wright, H. H. Smits et al., “Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses,” Journal of Experimental Medicine, vol. 206, no. 8, pp. 1673–1680, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. T. Schroeder, “Basophils beyond effector cells of allergic inflammation,” Advances in Immunology, vol. 101, pp. 123–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Seder, W. E. Paul, A. M. Dvorak et al., “Mouse splenic and bone marrow cell populations that express high-affinity Fc(ε) receptors and produce interleukin 4 are highly enriched in basophils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 7, pp. 2835–2839, 1991. View at Scopus
  18. R. A. Seder, M. Plaut, S. Barbieri, J. F. Urban Jr., F. D. Finkelman, and W. E. Paul, “Purified Fc epsilon R+ bone marrow and splenic non-B, non-T cells are highly enriched in the capacity to produce IL-4 in response to immobilized IgE, IgG2a, or ionomycin,” The Journal of Immunology, vol. 147, no. 3, pp. 903–909, 1991. View at Scopus
  19. E. Mitre, R. T. Taylor, J. Kubofcik, and T. B. Nutman, “Parasite antigen-driven basophils are a major source of IL-4 in human filarial infections,” The Journal of Immunology, vol. 172, no. 4, pp. 2439–2445, 2004. View at Scopus
  20. B. Min, M. Prout, J. Hu-Li et al., “Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite,” Journal of Experimental Medicine, vol. 200, no. 4, pp. 507–517, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. B. F. Gibbs, “Human basophils as effectors and immunomodulators of allergic inflammation and innate immunity,” Clinical and Experimental Medicine, vol. 5, no. 2, pp. 43–49, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. E. Aumüller, G. Schramm, A. Gronow et al., “Echinococcus multilocularis metacestode extract triggers human basophils to release interleukin-4,” Parasite Immunology, vol. 26, no. 10, pp. 387–395, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. C. Ohnmacht, C. Schwartz, M. Panzer, I. Schiedewitz, R. Naumann, and D. Voehringer, “Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths,” Immunity, vol. 33, no. 3, pp. 364–374, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. L. J. Cliffe and R. K. Grencis, “The Trichuris muris system: a paradigm of resistance and susceptibility to intestinal nematode infection,” Advances in Parasitology, vol. 57, pp. 255–307, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. H. Tang, W. Cao, S. P. Kasturi et al., “The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling,” Nature Immunology, vol. 11, no. 7, pp. 608–617, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. M. Rimoldi, M. Chieppa, V. Salucci et al., “Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells,” Nature Immunology, vol. 6, no. 5, pp. 507–514, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. Al-Shami, R. Spolski, J. Kelly, A. Keane-Myers, and W. J. Leonard, “A role for TSLP in the development of inflammation in an asthma model,” Journal of Experimental Medicine, vol. 202, no. 6, pp. 829–839, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. T. Phythian-Adams, P. C. Cook, R. J. Lundie et al., “CD11c depletion severely disrupts Th2 induction and development in vivo,” Journal of Experimental Medicine, vol. 207, no. 10, pp. 2089–2096, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. S. Kim, M. Prout, H. Ramshaw, A. F. Lopez, G. LeGros, and B. Min, “Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3,” The Journal of Immunology, vol. 184, no. 3, pp. 1143–1147, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. R. Riganò, B. Buttari, E. Profumo et al., “Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response,” Infection and Immunity, vol. 75, no. 4, pp. 1667–1678, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. S. MacDonald and R. M. Maizels, “Alarming dendritic cells for Th2 induction,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 13–17, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. C. A. Terrazas, L. Gómez-García, and L. I. Terrazas, “Impaired pro-inflammatory cytokine production and increased Th2-biasing ability of dendritic cells exposed to Taenia excreted/secreted antigens: a critical role for carbohydrates but not for STAT6 signaling,” International Journal for Parasitology, vol. 40, no. 9, pp. 1051–1062, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. C. A. Terrazas, F. Sánchez-Muñoz, A. M. Mejía-Domínguez et al., “Cestode antigens induce a tolerogenic-like phenotype and inhibit LPS in-flammatory responses in human dendritic cells,” International Journal of Biological Sciences, vol. 7, no. 9, pp. 1391–1400, 2011.
  34. N. M. Espindola, A. H. Iha, I. Fernandes, et al., “Cysticercosis immunodiagnosis using 18- and 14-kilodalton proteins from Taenia crassiceps cysticercus antigens obtained by immunoaffinity chromatography,” Journal of Clinical Microbiology, vol. 43, no. 7, pp. 3178–3184, 2005.
  35. G. Avila, L. Aguilar, M. Romero-Valdovinos, F. Garcia-Vazquez, and A. Flisser, “Cytokine response in the intestinal mucosa of hamsters infected with Taenia solium,” Annals of the New York Academy of Sciences, vol. 1149, pp. 170–173, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. J. E. Allen and R. M. Maizels, “Diversity and dialogue in immunity to helminths,” Nature Reviews Immunology, vol. 11, no. 6, pp. 375–388, 2011.
  37. P. J. Hotez, P. J. Brindley, J. M. Bethony, C. H. King, E. J. Pearce, and J. Jacobson, “Helminth infections: the great neglected tropical diseases,” The Journal of Clinical Investigation, vol. 118, no. 4, pp. 1311–1321, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. C. L. Black, P. N. M. Mwinzi, E. M. O. Muok et al., “Influence of exposure history on the immunology and development of resistance to human Schistosomiasis mansoni,” PLoS Neglected Tropical Diseases, vol. 4, no. 3, article e637, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. A. E. Butterworth, A. J. Fulford, D. W. Dunne, J. H. Ouma, and R. F. Sturrock, “Longitudinal studies on human schistosomiasis,” Philosophical Transactions of the Royal Society of London. Series B, vol. 321, no. 1207, pp. 495–511, 1988. View at Scopus
  40. L. J. McHeyzer-Williams and M. G. McHeyzer-Williams, “Antigen-specific memory B cell development,” Annual Review of Immunology, vol. 23, pp. 487–513, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. D. W. Dunne, A. E. Butterworth, A. J. C. Fulford et al., “Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection,” European Journal of Immunology, vol. 22, no. 6, pp. 1483–1494, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. P. Rihet, C. E. Demeure, A. Bourgois, A. Prata, and A. J. Dessein, “Evidence for an association between human resistance to Schistosoma mansoni and high anti larval IgE levels,” European Journal of Immunology, vol. 21, no. 11, pp. 2679–2686, 1991. View at Scopus
  43. D. Voehringer, T. A. Reese, X. Huang, K. Shinkai, and R. M. Locksley, “Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system,” Journal of Experimental Medicine, vol. 203, no. 6, pp. 1435–1446, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. F. D. Finkelman, T. Shea-Donohue, S. C. Morris et al., “Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites,” Immunological Reviews, vol. 201, pp. 139–155, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. C. Ohnmacht and D. Voehringer, “Basophils protect against reinfection with hookworms independently of mast cells and memory Th2 cells,” The Journal of Immunology, vol. 184, no. 1, pp. 344–350, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. C. Phillips, W. R. Coward, D. I. Pritchard, and C. R. A. Hewitt, “Basophils express a type 2 cytokine profile on exposure to proteases from helminths and house dust mites,” Journal of Leukocyte Biology, vol. 73, no. 1, pp. 165–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. L. B. Bacharier and R. S. Geha, “Molecular mechanisms of IgE regulation,” Journal of Allergy and Clinical Immunology, vol. 105, no. 2, part 2, pp. S547–S558, 2000. View at Scopus
  48. C. Ohnmacht and D. Voehringer, “Basophil effector function and homeostasis during helminth infection,” Blood, vol. 113, no. 12, pp. 2816–2825, 2009. View at Publisher · View at Google Scholar · View at PubMed
  49. A. Denzel, U. A. Maus, M. R. Gomez et al., “Basophils enhance immunological memory responses,” Nature Immunology, vol. 9, no. 7, pp. 733–742, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. K. Chen, W. Xu, M. Wilson et al., “Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils,” Nature Immunology, vol. 10, no. 8, pp. 889–898, 2009. View at Publisher · View at Google Scholar · View at PubMed
  51. Y. Yanagihara, K. Kajiwara, Y. Basaki, K. Ikizawa, K. Akiyama, and H. Saito, “Induction of human IgE synthesis in B cells by a basophilic cell line, KU812,” Clinical and Experimental Immunology, vol. 108, no. 2, pp. 295–301, 1997.
  52. M. Yazdanbakhsh and D. L. Sacks, “Why does immunity to parasites take so long to develop?” Nature Reviews Immunology, vol. 10, no. 2, pp. 80–81, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. K. D. McCoy, M. Stoel, R. Stettler et al., “Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection,” Cell Host and Microbe, vol. 4, no. 4, pp. 362–373, 2008. View at Publisher · View at Google Scholar · View at PubMed
  54. M. Mack, M. A. Schneider, C. Moll, et al., “Identification of antigen-capturing cells as basophils,” The Journal of Immunology, vol. 174, no. 2, pp. 735–741, 2005.
  55. S. León-Cabrera, M. Cruz-Rivera, F. Mendlovic et al., “Standardization of an experimental model of human taeniosis for oral vaccination,” Methods, vol. 49, no. 4, pp. 346–350, 2009. View at Publisher · View at Google Scholar · View at PubMed
  56. N. El Gengehi, R. El Ridi, N. Abdel Tawab, M. El Demellawy, and B. L. Mangold, “A Schistosoma mansoni 62-kDa band is identified as an irradiated vaccine T-cell antigen and characterized as calreticulin,” Journal of Parasitology, vol. 86, no. 5, pp. 993–1000, 2000.
  57. G. Kasper, A. Brown, M. Eberl et al., “A calreticulin-like molecule from the human hookworm Necator americanus interacts with C1q and the cytoplasmic signalling domains of some integrins,” Parasite Immunology, vol. 23, no. 3, pp. 141–152, 2001. View at Publisher · View at Google Scholar
  58. J. Rzepecka, R. Lucius, M. Doligalska, S. Beck, S. Rausch, and S. Hartmann, “Screening for immunomodulatory proteins of the intestinal parasitic nematode Heligmosomoides polygyrus,” Parasite Immunology, vol. 28, no. 9, pp. 463–472, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. J. Rzepecka, S. Rausch, C. Klotz et al., “Calreticulin from the intestinal nematode Heligmosomoides polygyrus is a Th2-skewing protein and interacts with murine scavenger receptor-A,” Molecular Immunology, vol. 46, no. 6, pp. 1109–1119, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. D. I. Pritchard, D. S. W. Hooi, A. Brown, M. J. Bockarie, R. Caddick, and R. J. Quinnell, “Basophil competence during hookworm (Necator americanus) infection,” American Journal of Tropical Medicine and Hygiene, vol. 77, no. 5, pp. 860–865, 2007.