About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 295167, 8 pages
http://dx.doi.org/10.1155/2012/295167
Research Article

Conditioned Medium from Adipose Tissue-Derived Mesenchymal Stem Cells Induces CD4+FOXP3+ Cells and Increases IL-10 Secretion

1Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski,” Medical University of Sofia, 15 Acad. Ivan Geshov Street, 1431 Sofia, Bulgaria
2Institute of Reproductive Health, Ob/Gyn Hospital “Dr. Shterev,” 25-31 Hristo Blagoev Street, 1330 Sofia, Bulgaria
3Laboratory of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tsarigradsko Shosse Street, 1113 Sofia, Bulgaria
4Department of Orthopedics and Traumatology, University Hospital “Tsaritsa Yoanna,” Medical University of Sofia, 8 Byalo More Street, 1527 Sofia, Bulgaria

Received 12 June 2012; Accepted 5 October 2012

Academic Editor: Ken-ichi Isobe

Copyright © 2012 Ekaterina Ivanova-Todorova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Fiorina, M. Jurewicz, A. Augello et al., “Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes,” Journal of Immunology, vol. 183, no. 2, pp. 993–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Liu, R. Mu, S. Wang et al., “Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis,” Arthritis Research and Therapy, vol. 12, no. 6, p. R210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Shi, G. Hu, J. Su et al., “Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair,” Cell Research, vol. 20, no. 5, pp. 510–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Bochev, G. Elmadjian, D. Kyurkchiev et al., “Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro,” Cell Biology International, vol. 32, no. 4, pp. 384–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Djouad, C. Bouffi, S. Ghannam, D. Noël, and C. Jorgensen, “Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases.,” Nature Reviews, vol. 5, no. 7, pp. 392–399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Bassi, C. Aita, and N. Camara, “Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand,” World Journal of Stem Cells, vol. 3, no. 1, pp. 1–8, 2011.
  7. E. Ben-Ami, S. Berrih-Aknin, and A. Miller, “Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases,” Autoimmunity Reviews, vol. 10, no. 7, pp. 410–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. E. Newman, D. Yoo, M. A. LeRoux, and A. Danilkovitch-Miagkova, “Treatment of inflammatory diseases with mesenchymal stem cells,” Inflammation and Allergy, vol. 8, no. 2, pp. 110–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Selmani, A. Naji, I. Zidi et al., “Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells,” Stem Cells, vol. 26, no. 1, pp. 212–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Ye, Y. Wang, H. Y. Xie, and S. S. Zheng, “Immunosuppressive effects of rat mesenchymal stem cells: involvement of CD4+CD25+ regulatory T cells,” Hepatobiliary and Pancreatic Diseases International, vol. 7, no. 6, pp. 608–614, 2008. View at Scopus
  11. E. Ivanova-Todorova, I. Bochev, M. Mourdjeva et al., “Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells,” Immunology Letters, vol. 126, no. 1-2, pp. 37–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Zou, “Regulatory T cells, tumour immunity and immunotherapy,” Nature Reviews Immunology, vol. 6, no. 4, pp. 295–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. L. R. Guerin, J. R. Prins, and S. A. Robertson, “Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment?” Human Reproduction Update, vol. 15, no. 5, pp. 517–535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Dieckmann, C. H. Bruett, H. Ploettner, M. B. Lutz, and G. Schuler, “Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin 1-producing, contact-independent type 1-like regulatory T cells,” Journal of Experimental Medicine, vol. 196, no. 2, pp. 247–253, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Baecher-Allan, V. Viglietta, and D. A. Hafler, “Human CD4+CD25+ regulatory T cells,” Seminars in Immunology, vol. 16, no. 2, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. T. L. Holm, J. Nielsen, and M. H. Claesson, “CD4+CD25+ regulatory T cells: I. Phenotype and physiology,” APMIS, vol. 112, no. 10, pp. 629–641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Jiang and L. Chess, “An integrated view of suppressor T cell subsets in immunoregulation,” Journal of Clinical Investigation, vol. 114, no. 9, pp. 1198–1208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. Horwitz, “Regulatory T cells in systemic lupus erythematosus: past, present and future,” Arthritis Research and Therapy, vol. 10, no. 6, p. 227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. E. Cone and S. Bhowmick, “Cytokines and sympathy: the control of regulatory T cells,” International Journal of Interferon, Cytokine and Mediator Research, vol. 2, no. 1, pp. 41–47, 2010. View at Scopus
  20. J. A. Bluestone, “Mechanisms of tolerance,” Immunological Reviews, vol. 241, no. 1, pp. 5–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Y. Rudensky, “Regulatory T cells and Foxp3,” Immunological Reviews, vol. 241, no. 1, pp. 260–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Liu, A. L. Putnam, Z. Xu-yu et al., “CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells,” Journal of Experimental Medicine, vol. 203, no. 7, pp. 1701–1711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. S. Shen, J. Wang, D. F. Shen et al., “CD4+CD25+CD127low/- regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression,” Clinical Immunology, vol. 131, no. 1, pp. 109–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Yan and Y. Liu, “The nature of increased circulating CD4+CD25 -Foxp3+ T cells in patients with systemic lupus erythematosus: a novel hypothesis,” Open Rheumatology Journal, vol. 3, pp. 22–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. A. Horwitz, “Identity of mysterious CD4+CD25-Foxp3+ cells in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 12, no. 1, p. 101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Gonzalez-Rey, P. Anderson, M. A. González, L. Rico, D. Büscher, and M. Delgado, “Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis,” Gut, vol. 58, no. 7, pp. 929–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. F. Ziegler and J. H. Buckner, “FOXP3 and the regulation of Treg/Th17 differentiation,” Microbes and Infection, vol. 11, no. 5, pp. 594–598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. de Lafaille and J. J. Lafaille, “Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor?” Immunity, vol. 30, no. 5, pp. 626–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Nakagawa, M. Tsuruoka, H. Ogura et al., “IL-6 positively regulates Foxp3+CD8+ T cells in vivo,” International Immunology, vol. 22, no. 2, Article ID dxp119, pp. 129–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. O'Garra and P. Vieira, “TH1 cells control themselves by producing interleukin-10,” Nature Reviews Immunology, vol. 7, no. 6, pp. 425–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. J. Heo, Y. B. Joo, H. J. Oh et al., “IL-10 suppresses Th17 cells and promotes regulatory T cells in the CD4+ T cell population of rheumatoid arthritis patients,” Immunology Letters, vol. 127, no. 2, pp. 150–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Kimura and T. Kishimoto, “IL-6: regulator of Treg/Th17 balance,” European Journal of Immunology, vol. 40, no. 7, pp. 1830–1835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Steensberg, C. P. Fischer, C. Keller, K. Møller, and B. K. Pedersen, “IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans,” American Journal of Physiology-Endocrinology and Metabolism, vol. 285, no. 2, pp. E433–E437, 2003. View at Scopus
  34. F. Djouad, L. M. Charbonnier, C. Bouffi et al., “Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism,” Stem Cells, vol. 25, no. 8, pp. 2025–2032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Bouffi, C. Bony, G. Courties, C. Jorgensen, and D. Noël, “IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis,” PLoS ONE, vol. 5, no. 12, Article ID e14247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. T. Mayer, S. Floess, A. M. Baru, K. Lahl, J. Huehn, and T. Sparwasser, “CD8+Foxp3+ T cells share developmental and phenotypic features with classical CD4+Foxp3+ regulatory T cells but lack potent suppressive activity,” European Journal of Immunology, vol. 41, no. 3, pp. 716–725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Ivanova-todorova, M. Mourdjeva, D. Kyurkchiev et al., “HLA-G expression Is up-regulated by progesterone in mesenchymal stem cells,” American Journal of Reproductive Immunology, vol. 62, no. 1, pp. 24–33, 2009. View at Publisher · View at Google Scholar · View at Scopus