About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 325659, 8 pages
http://dx.doi.org/10.1155/2012/325659
Review Article

Evolution of Mosquito-Based Arbovirus Surveillance Systems in Australia

1Public Health Virology, Communicable Diseases Unit, Queensland Health Forensic and Scientific Services, 39 Kessels Rd, Coopers Plains, Queensland 4108, Australia
2Discipline of Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
3School of Public Health, Tropical Medicine and Rehabilitative Services, James Cook University, Cairns, Queensland 4870, Australia

Received 2 November 2011; Accepted 7 December 2011

Academic Editor: Bradley J. Blitvich

Copyright © 2012 Andrew F. van den Hurk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Russell and D. E. Dwyer, “Arboviruses associated with human disease in Australia,” Microbes and Infection, vol. 2, no. 14, pp. 1693–1704, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. G. J. Fitzsimmons, P. Wright, C. A. Johansen, P. I. Whelan, and National Arbovirus and Malaria Advisory Committee, “Arboviral diseases and malaria in Australia, 2007/08: annual report of the National Arbovirus and Malaria Advisory Committee,” Communicable Diseases Intelligence, vol. 33, no. 2, pp. 155–169, 2009.
  3. J. N. Hanna and S. A. Ritchie, “Outbreaks of dengue in north Queensland, 1990–2008,” Communicable Diseases Intelligence, vol. 33, no. 1, pp. 32–33, 2009. View at Scopus
  4. J. N. Hanna, S. A. Ritchie, D. A. Phillips et al., “An outbreak of Japanese encephalitis in the Torres Strait, Australia, 1995,” Medical Journal of Australia, vol. 165, no. 5, pp. 256–260, 1996. View at Scopus
  5. C. C. Jansen, C. E. Webb, J. A. Northill, S. A. Ritchie, R. C. Russell, and A. F. van den Hurk, “Vector competence of Australian mosquito species for a North American strain of West Nile virus,” Vector-Borne and Zoonotic Diseases, vol. 8, no. 6, pp. 805–811, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. J. Turell and B. H. Kay, “Susceptibility of selected strains of Australian mosquitoes (Diptera: Culicidae) to rift valley fever virus,” Journal of Medical Entomology, vol. 35, no. 2, pp. 132–135, 1998. View at Scopus
  7. A. F. van den Hurk, S. Hall-Mendelin, A. T. Pyke, G. A. Smith, and J. S. Mackenzie, “Vector competence of Australian mosquitoes for chikungunya virus,” Vector-Borne and Zoonotic Diseases, vol. 10, no. 5, pp. 489–495, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. T. D. S. George, “A sentinel herd system for the study of arbovirus infections in Australia and Papua-New Guinea,” Veterinary Science Communications, vol. 4, no. 1, pp. 39–51, 1980. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Campbell and D. E. Hore, “Isolation of Murray Valley encephalitis virus from sentinel chickens,” Australian Veterinary Journal, vol. 51, no. 1, pp. 1–3, 1975. View at Scopus
  10. S. Doggett, J. Clancy, J. Haniotis, et al., The New South Wales Arbovirus Surveillance and Mosquito Monitoring Program 2010-2011 Annual Report, Department of Medical Entomology, ICPMR, Westmead Hospital, Westmead, Australia, 2011.
  11. C. Johansen, S. McFall, S. Wong, et al., The University of Western Australia Arbovirus Surveillance and Research Laboratory Annual Report Summary: 2009-2010, University of Western Australia, Perth, Australia, 2010.
  12. P. I. Whelan and G. P. Gard, “Arbovirus surveillance in the Northern Territory 1981,” Communicable Diseases Intelligence, vol. 12, no. 1, pp. 2–3, 1981.
  13. J. Shield, J. Hanna, and D. Phillips, “Reappearance of the Japanese encephalitis virus in the Torres Strait, 1996,” Communicable Diseases Intelligence, vol. 20, no. 8, p. 191, 1996.
  14. D. Rohe and R. P. Fall, “A miniature battery powered CO2 baited light trap for mosquito borne encephalitis surveillance,” Bulletin of the Society for Vector Ecology, vol. 4, no. 1, pp. 24–27, 1979.
  15. W. D. Sudia and R. W. Chamberlain, “Battery-operated light trap, an improved model,” Mosquito News, vol. 22, no. 2, pp. 126–129, 1962.
  16. A. K. Broom, R. A. Hall, C. A. Johansen et al., “Identification of Australian arboviruses in inoculated cell cultures using monoclonal antibodies in ELISA,” Pathology, vol. 30, no. 3, pp. 286–288, 1998. View at Scopus
  17. B. Forghani and S. Hagens, “Diagnosis of viral infections by antigen detection,” in Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, E. H. Lennette, D. A. Lennette, and E. T. Lennette, Eds., pp. 79–96, American Public Health Association, Washington, DC, USA, 7th edition, 1995.
  18. S. A. Ritchie, I. D. Fanning, D. A. Phillips, H. A. Standfast, D. McGinn, and B. H. Kay, “Ross River virus in mosquitoes (Diptera: Culicidae) during the 1994 epidemic around Brisbane, Australia,” Journal of Medical Entomology, vol. 34, no. 2, pp. 156–159, 1997. View at Scopus
  19. S. A. Ritchie, D. Phillips, A. Broom, J. Mackenzie, M. Poidinger, and A. van den Hurk, “Isolation of Japanese encephalitis virus from Culex annulirostris in Australia,” American Journal of Tropical Medicine and Hygiene, vol. 56, no. 1, pp. 80–84, 1997. View at Scopus
  20. D. L. Kline, “Evaluation of various models of propane-powered mosquito traps,” Journal of Vector Ecology, vol. 27, no. 1, pp. 1–7, 2002. View at Scopus
  21. C. A. Johansen, B. L. Montgomery, J. S. Mackenzie, and S. A. Ritchie, “Efficacies of the MosquitoMagnet and counterflow geometry traps in north Queensland, Australia,” Journal of the American Mosquito Control Association, vol. 19, no. 3, pp. 265–270, 2003. View at Scopus
  22. M. J. Bangs, R. Tan, E. Listiyaningsih, B. H. Kay, and K. R. Porter, “Detection of dengue viral RNA in Aedes aegypti (diptera: culicidae) exposed to sticky lures using reverse-transcriptase polymerase chain reaction,” Journal of Medical Entomology, vol. 38, no. 5, pp. 720–724, 2001. View at Scopus
  23. L. D. Kramer, R. E. Chiles, T. Do, and H. M. Fallah, “Detection of St. Louis encephalitis and western equine encephalomyelitis RNA in mosquitoes tested without maintenance of a cold chain,” Journal of the American Mosquito Control Association, vol. 17, no. 4, pp. 213–215, 2001. View at Scopus
  24. M. J. Turell, A. R. Spring, M. K. Miller, and C. E. Cannon, “Effect of holding conditions on the detection of West Nile viral RNA by reverse transcriptase-polymerase chain reaction from mosquito (Diptera: Culicidae) pools,” Journal of Medical Entomology, vol. 39, no. 1, pp. 1–3, 2002. View at Scopus
  25. C. A. Johansen, R. A. Hall, A. F. van den Hurk, S. A. Ritchie, and J. S. Mackenzie, “Detection and stability of Japanese encephalitis virus RNA and virus viability in dead infected mosquitoes under different storage conditions,” American Journal of Tropical Medicine and Hygiene, vol. 67, no. 6, pp. 656–661, 2002. View at Scopus
  26. S. A. Ritchie, A. T. Pyke, G. A. Smith et al., “Field evaluation of a sentinel mosquito (Diptera: Culicidae) trap system to detect Japanese encephalitis in remote Australia,” Journal of Medical Entomology, vol. 40, no. 3, pp. 249–252, 2003. View at Scopus
  27. M. J. Bangs, R. Pudiantari, and Y. R. Gionar, “Persistence of dengue virus RNA in dried Aedes aegypti (Diptera: Culicidae) exposed to natural tropical conditions,” Journal of Medical Entomology, vol. 44, no. 1, pp. 163–167, 2007. View at Scopus
  28. S. A. Ritchie, S. Long, G. Smith, A. Pyke, and T. B. Knox, “Entomological investigations in a focus of dengue transmission in Cairns, Queensland, Australia, by using the sticky ovitraps,” Journal of Medical Entomology, vol. 41, no. 1, pp. 1–4, 2004. View at Scopus
  29. S. A. Ritchie, A. F. van den Hurk, P. Zborowski et al., “Operational trials of remote mosquito trap systems for Japanese encephalitis virus surveillance in the Torres Strait, Australia,” Vector-Borne and Zoonotic Diseases, vol. 7, no. 4, pp. 497–506, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. A. T. Pyke, I. L. Smith, A. F. van den Hurk et al., “Detection of Australasian Flavivirus encephalitic viruses using rapid fluorogenic TaqMan RT-PCR assays,” Journal of Virological Methods, vol. 117, no. 2, pp. 161–167, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. F. van den Hurk, B. L. Montgomery, P. Zborowski, N. W. Beebe, R. D. Cooper, and S. A. Ritchie, “Does 1-octen-3-ol enhance trap collections of Japanese encephalitis virus mosquito vectors in northern Australia?” Journal of the American Mosquito Control Association, vol. 22, no. 1, pp. 15–21, 2006. View at Scopus
  32. S. L. Doggett, M. J. Klowden, and R. C. Russell, “Are vector competence experiments competent vector experiments?” Arbovirus Research in Australia, vol. 8, pp. 126–130, 2001.
  33. A. F. van den Hurk, P. H. Johnson, S. Hall-Mendelin et al., “Expectoration of flaviviruses during sugar feeding by mosquitoes (Diptera: Culicidae),” Journal of Medical Entomology, vol. 44, no. 5, pp. 845–850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Hall-Mendelin, S. A. Ritchie, C. A. Johansen et al., “Exploiting mosquito sugar feeding to detect mosquito-borne pathogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 25, pp. 11255–11259, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. P. E. Lusby, A. L. Coombes, and J. M. Wilkinson, “Bactericidal activity of different honeys against pathogenic bacteria,” Archives of Medical Research, vol. 36, no. 5, pp. 464–467, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. R. J. Weston, L. K. Brocklebank, and Y. Lu, “Identification and quantitative levels of antibacterial components of some New Zealand honeys,” Food Chemistry, vol. 70, no. 4, pp. 427–435, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. S. A. Ritchie, P. Zborowski, D. Banks, I. Walsh, and J. Davis, “Efficacy of novel updraft traps for collection of mosquitoes in Cairns, Australia,” Journal of the American Mosquito Control Association, vol. 24, no. 4, pp. 520–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. A. Hall, A. K. Broom, A. C. Hartnett, M. J. Howard, and J. S. Mackenzie, “Immunodominant epitopes on the NS1 proteins of MVE and KUN viruses serve as targets for a blocking ELISA to detect virus-specific antibodies in sentinel animal serum,” Journal of Virological Methods, vol. 51, no. 2-3, pp. 201–210, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. C. E. Schreck, H. K. Gouck, and K. H. Posey, “An experimental Plexiglas mosquito trap utilizing carbon dioxide,” Mosquito News, vol. 30, no. 4, pp. 641–645, 1970.
  40. Y. Saitoh, J. Hattori, S. Chinone et al., “Yeast-generated CO2 as a convenient source of carbon dioxide for adult mosquito sampling,” Journal of the American Mosquito Control Association, vol. 20, no. 3, pp. 261–264, 2004. View at Scopus
  41. R. C. Smallegange, W. H. Schmied, K. J. Van Roey et al., “Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae,” Malaria Journal, vol. 9, no. 1, article no. 292, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. D. L. Kline, “Traps and trapping techniques for adult mosquito control,” Journal of the American Mosquito Control Association, vol. 22, no. 3, pp. 490–496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. D. L. Kline, “Semiochemicals, traps/targets and mass trapping technology for mosquito management,” Journal of the American Mosquito Control Association, vol. 23, supplement 2, pp. 241–251, 2007. View at Scopus
  44. D. F. Hoel, D. L. Kline, S. A. Allan, and A. Grant, “Evaluation of carbon dioxide, 1-octen-3-ol, and lactic acid as baits in Mosquito Magnet Pro traps for Aedes albopictus in north central Florida,” Journal of the American Mosquito Control Association, vol. 23, no. 1, pp. 11–17, 2007. View at Scopus
  45. F. O. Okumu, G. F. Killeen, S. Ogoma et al., “Development and field evaluation of a synthetic mosquito lure that is more attractive than humans,” PloS One, vol. 5, no. 1, p. e8951, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. J. A. Kemme, P. H. Van Essen, S. A. Ritchie, and B. H. Kay, “Response of mosquitoes to carbon dioxide and 1-octen-3-ol in southeast Queensland, Australia,” Journal of the American Mosquito Control Association, vol. 9, no. 4, pp. 431–435, 1993. View at Scopus
  47. S. A. Ritchie, P. H. van Essen, J. A. Kemme, B. H. Kay, and D. Allaway, “Response of biting midges (Diptera: Ceratopogonidae) to carbon dioxide, octenol, and light in southeastern Queensland, Australia,” Journal of Medical Entomology, vol. 31, no. 5, pp. 645–648, 1994. View at Scopus
  48. G. M. Beavers, H. A. Hanafi, and E. A. Dykstra, “Evaluation of 1-octen-3-ol and carbon dioxide as attractants for Phlebotomus papatasi (Diptera: Psychodidae) in southern Egypt,” Journal of the American Mosquito Control Association, vol. 20, no. 2, pp. 130–133, 2004. View at Scopus
  49. R. G. Evans, “Laboratory evaluation of the irritancy of bendiocarb, lambda-cyhalothrin and DDT to Anopheles gambiae,” Journal of the American Mosquito Control Association, vol. 9, no. 3, pp. 285–293, 1993. View at Scopus
  50. W. H. White, C. M. McCoy, J. A. Meyer et al., “Knockdown and mortality comparisons among spinosad-, imidacloprid-, and methomyl-containing baits against susceptible Musca domestica (Diptera: Muscidae) under laboratory conditions,” Journal of Economic Entomology, vol. 100, no. 1, pp. 155–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. L. P. Rapley, R. C. Russell, B. L. Montgomery, and S. A. Ritchie, “The effects of sustained release metofluthrin on the biting, movement, and mortality of Aedes aegypti in a domestic setting,” American Journal of Tropical Medicine and Hygiene, vol. 81, no. 1, pp. 94–99, 2009. View at Scopus
  52. F. S. Teles, “Biosensors and rapid diagnostic tests on the frontier between analytical and clinical chemistry for biomolecular diagnosis of dengue disease: a review,” Analytica Chimica Acta, vol. 687, no. 1, pp. 28–42, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. Kircher and J. Kelso, “High-throughput DNA sequencing—concepts and limitations,” BioEssays, vol. 32, no. 6, pp. 524–536, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster, “MEGAN analysis of metagenomic data,” Genome Research, vol. 17, no. 3, pp. 377–386, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. T. W. Scott, S. A. Wright, B. F. Eldridge, and D. A. Brown, “Cost effectiveness of three arbovirus surveillance methods in northern California,” Journal of the American Mosquito Control Association, vol. 17, no. 2, pp. 118–123, 2001. View at Scopus
  56. L. Bonetta, “Whole-Genome sequencing breaks the cost barrier,” Cell, vol. 141, no. 6, pp. 917–919, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. K.-H. Kim and J.-W. Bae, “Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses,” Applied and Environmental Microbiology, vol. 77, no. 21, pp. 7663–7668, 2011. View at Publisher · View at Google Scholar · View at PubMed
  58. E. F. Donaldson, A. N. Haskew, J. E. Gates, J. Huynh, C. J. Moore, and M. B. Frieman, “Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat,” Journal of Virology, vol. 84, no. 24, pp. 13004–13018, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. L. Li, J. G. Victoria, C. Wang et al., “Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses,” Journal of Virology, vol. 84, no. 14, pp. 6955–6965, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. E.-J. Park, K.-H. Kim, G. C. J. Abell, M.-S. Kim, S. W. Roh, and J.-W. Bae, “Metagenomic analysis of the viral communities in fermented foods,” Applied and Environmental Microbiology, vol. 77, no. 4, pp. 1284–1291, 2011. View at Publisher · View at Google Scholar · View at PubMed
  61. D. Bogaert, B. Keijser, S. Huse et al., “Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis,” PLoS One, vol. 6, no. 2, Article ID e17035, 2011. View at Publisher · View at Google Scholar · View at PubMed
  62. A. L. Greninger, E. C. Chen, T. Sittler et al., “A metagenomic analysis of pandemic influenza a (2009 H1N1) infection in patients from North America,” PLoS One, vol. 5, no. 10, Article ID e13381, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. S. Nakamura, C. S. Yang, N. Sakon et al., “Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach,” PLoS One, vol. 4, no. 1, Article ID e4219, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. C. Schatz, B. Langmead, and S. L. Salzberg, “Cloud computing and the DNA data race,” Nature Biotechnology, vol. 28, no. 7, pp. 691–693, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus