About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 346761, 7 pages
http://dx.doi.org/10.1155/2012/346761
Review Article

Advancement in the Development of Models for Hepatitis C Research

1Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610, USA
2Center for Orphan Autoimmune Disorders, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
3Department of Infectious Diseases and Pathology, University of Florida, 2015 SW 16th Avenue, Gainesville, Florida 32608-00881, USA

Received 18 January 2012; Accepted 2 April 2012

Academic Editor: Andrea Vecchione

Copyright © 2012 Wendy C. Carcamo and Cuong Q. Nguyen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Hoofnagle, “Course and outcome of hepatitis C,” Hepatology, vol. 36, no. 5, supplement 1, pp. S21–S29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. “National Institutes of Health Consensus Development Conference Statement: management of hepatitis C 2002 (June 10–12, 2002),” Gastroenterology, vol. 123, no. 6, pp. 2082–2099, 2002. View at Publisher · View at Google Scholar
  3. H. J. Alter and L. B. Seeff, “Recovery, persistence, and sequelae in hepatitis C virus infection: a perspective on long-term outcome,” Seminars in Liver Disease, vol. 20, no. 1, pp. 17–35, 2000. View at Scopus
  4. M. Charlton, “Hepatitis C infection in liver transplantation,” American Journal of Transplantation, vol. 1, no. 3, pp. 197–203, 2001.
  5. L. B. Seeff, “Natural history of hepatitis C,” Hepatology, vol. 26, no. 3, supplement 1, pp. 21S–28S, 1997. View at Scopus
  6. E. Foy, K. Li, C. Wang et al., “Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease,” Science, vol. 300, no. 5622, pp. 1145–1148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. W. Fried, M. L. Shiffman, K. Rajender Reddy et al., “Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection,” New England Journal of Medicine, vol. 347, no. 13, pp. 975–982, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Hadziyannis, H. Sette, T. R. Morgan et al., “Peginterferon-α2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose,” Annals of Internal Medicine, vol. 140, no. 5, pp. 346–I67, 2004. View at Scopus
  9. M. P. Manns, J. G. McHutchison, S. C. Gordon et al., “Peginterferon alfa-2b plus ribavirin compared with interferonalfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial,” Lancet, vol. 358, no. 9286, pp. 958–965, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kau, J. Vermehren, and C. Sarrazin, “Treatment predictors of a sustained virologic response in hepatitis B and C,” Journal of Hepatology, vol. 49, no. 4, pp. 634–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. R. Smith, V. Suppiah, K. O'Connor et al., “Identification of improved IL28B SNPs and haplotypes for prediction of drug response in treatment of hepatitis C using massively parallel sequencing in a cross-sectional European cohort,” Genome Medicine, vol. 3, no. 8, p. 57, 2011.
  12. P. Simmonds, J. Bukh, C. Combet et al., “Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes,” Hepatology, vol. 42, no. 4, pp. 962–973, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. L. Choo, G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, and M. Houghton, “Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome,” Science, vol. 244, no. 4902, pp. 359–362, 1989. View at Scopus
  14. G. M. Lauer and B. D. Walker, “Hepatitis C virus infection,” New England Journal of Medicine, vol. 345, no. 1, pp. 41–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. L. B. Dustin and C. M. Rice, “Flying under the radar: the immunobiology of hepatitis C,” Annual Review of Immunology, vol. 25, pp. 71–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Rosenberg, “Recent advances in the molecular biology of Hepatitis C virus,” Journal of Molecular Biology, vol. 313, no. 3, pp. 451–464, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. O. De Beeck and J. Dubuisson, “Topology of hepatitis C virus envelope glycoproteins,” Reviews in Medical Virology, vol. 13, no. 4, pp. 233–241, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Kato, “Genome of human hepatitis C virus (HCV): gene organization, sequence diversity, and variation,” Microbial and Comparative Genomics, vol. 5, no. 3, pp. 129–151, 2000. View at Scopus
  19. K. I. Ohba, M. Mizokami, J. Y. N. Lau, E. Orito, K. Ikeo, and T. Gojobori, “Evolutionary relationship of hepatitis C, pesti-, flavi-, plantviruses, and newly discovered GB hepatitis agents,” FEBS Letters, vol. 378, no. 3, pp. 232–234, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Penin, J. Dubuisson, F. A. Rey, D. Moradpour, and J. M. Pawlotsky, “Structural biology of hepatitis C virus,” Hepatology, vol. 39, no. 1, pp. 5–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Lohmann, J. O. Koch, and R. Bartenschlager, “Processing pathways of the hepatitis C virus proteins,” Journal of Hepatology, Supplement, vol. 24, supplement 2, pp. 11–19, 1996. View at Scopus
  22. R. Bartenschlager and V. Lohmann, “Replication of hepatitis C virus,” Journal of General Virology, vol. 81, no. 7, pp. 1631–1648, 2000. View at Scopus
  23. M. J. Evans, T. Von Hahn, D. M. Tscherne et al., “Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry,” Nature, vol. 446, no. 7137, pp. 801–805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Bartosch and F. L. Cosset, “Cell entry of hepatitis C virus,” Virology, vol. 348, no. 1, pp. 1–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Cocquerel, C. Voisset, and J. Dubuisson, “Hepatitis C virus entry: potential receptors and their biological functions,” Journal of General Virology, vol. 87, no. 5, pp. 1075–1084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Kohaar, A. Ploss, E. Korol et al., “Splicing diversity of the human OCLN gene and its biological significance for hepatitis C virus entry,” Journal of Virology, vol. 84, no. 14, pp. 6987–6994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Ray, “Hepatitis: NPC1L1 identified as a novel HCV entry factor,” Nature Reviews Gastroenterology and Hepatology, vol. 9, no. 3, 124. View at Publisher · View at Google Scholar
  28. B. Sainz Jr, N. Barretto, D. N. Martin et al., “Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor,” Nature Medicine, vol. 18, no. 2, pp. 281–285, 2012. View at Publisher · View at Google Scholar
  29. B. D. Lindenbach and C. M. Rice, “Unravelling hepatitis C virus replication from genome to function,” Nature, vol. 436, no. 7053, pp. 933–938, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Pavio and M. M. C. Lai, “The hepatitis C virus persistence: how to evade the immune system?” Journal of Biosciences, vol. 28, no. 3, pp. 287–304, 2003. View at Scopus
  31. R. Bartenschlager, “Hepatitis C virus replicons: potential role for drug development,” Nature Reviews Drug Discovery, vol. 1, no. 11, pp. 911–916, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Iacovacci, A. Manzin, S. Barca et al., “Molecular characterization and dynamics of hepatitis C virus replication in human fetal hepatocytes infected in vitro,” Hepatology, vol. 26, no. 5, pp. 1328–1337, 1997. View at Scopus
  33. S. Iacovacci, M. Sargiacomo, I. Parolini, A. Ponzetto, C. Peschle, and G. Carloni, “Replication and multiplication of hepatitis C virus genome in human foetal liver cells,” Research in Virology, vol. 144, no. 4, pp. 275–279, 1993. View at Scopus
  34. R. E. Lanford, C. Sureau, J. R. Jacob, R. White, and T. R. Fuerst, “Demonstration of in vitro infection of chimpanzee hepatocytes with hepatitis C virus using strand-specific RT/PCR,” Virology, vol. 202, no. 2, pp. 606–614, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Rumin, P. Berthillon, E. Tanaka et al., “Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro,” Journal of General Virology, vol. 80, no. 11, pp. 3007–3018, 1999. View at Scopus
  36. B. Cribier, C. Schmitt, A. Bingen, A. Kirn, and F. Keller, “In vitro infection of peripheral blood mononuclear cells by hepatitis C virus,” Journal of General Virology, vol. 76, no. 10, pp. 2485–2491, 1995. View at Scopus
  37. M. Ikeda, K. Sugiyama, T. Mizutani et al., “Human hepatocyte clonal cell lines that support persistent replication of hepatitis C virus,” Virus Research, vol. 56, no. 2, pp. 157–167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Kato, M. Ikeda, T. Mizutani et al., “Replication of hepatitis C virus in cultured non-neoplastic human hepatocytes,” Japanese Journal of Cancer Research, vol. 87, no. 8, pp. 787–792, 1996. View at Scopus
  39. T. Mizutani, N. Kato, M. Ikeda, K. Sugiyama, and K. Shimotohno, “Long-term human T-cell culture system supporting hepatitis C virus replication,” Biochemical and Biophysical Research Communications, vol. 227, no. 3, pp. 822–826, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Nakajima, M. Hijikata, H. Yoshikura, and Y. K. Shimizu, “Characterization of long-term cultures of hepatitis C virus,” Journal of Virology, vol. 70, no. 5, pp. 3325–3329, 1996. View at Scopus
  41. Y. K. Shimizu, H. Igarashi, T. Kiyohara et al., “Infection of a chimpanzee with hepatitis C virus grown in cell culture,” Journal of General Virology, vol. 79, no. 6, pp. 1383–1386, 1998. View at Scopus
  42. B. J. Yoo, M. J. Selby, J. Choe et al., “Transfection of a differentiated human hepatoma cell line (Huh7) with in vitro-transcribed hepatitis C virus (HCV) RNA and establishment of a long- term culture persistently infected with HCV,” Journal of Virology, vol. 69, no. 1, pp. 32–38, 1995. View at Scopus
  43. S. Dash, A. B. Halim, H. Tsuji, N. Hiramatsu, and M. A. Gerber, “Transfection of HepG2 cells with infectious hepatitis C virus genome,” American Journal of Pathology, vol. 151, no. 2, pp. 363–373, 1997. View at Scopus
  44. M. Yanagi, M. S. Claire, S. U. Emerson, R. H. Purcell, and J. Bukh, “In vivo analysis of the 3′ untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2291–2295, 1999. View at Scopus
  45. A. A. Kolykhalov, K. Mihalik, S. M. Feinstone, and C. M. Rice, “Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo,” Journal of Virology, vol. 74, no. 4, pp. 2046–2051, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Lohmann, F. Körner, J. O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager, “Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line,” Science, vol. 285, no. 5424, pp. 110–113, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. S. E. Behrens, C. W. Grassmann, H. J. Thiel, G. Meyers, and N. Tautz, “Characterization of an autonomous subgenomic pestivirus RNA replicon,” Journal of Virology, vol. 72, no. 3, pp. 2364–2372, 1998. View at Scopus
  48. P. Liljestrom and H. Garoff, “A new generation of animal cell expression vectors based on the Semliki Forest virus replicon,” Bio/Technology, vol. 9, no. 12, pp. 1356–1361, 1991. View at Publisher · View at Google Scholar · View at Scopus
  49. A. A. Khromykh and E. G. Westaway, “Subgenomic replicons of the flavivirus Kunjin: construction and applications,” Journal of Virology, vol. 71, no. 2, pp. 1497–1505, 1997. View at Scopus
  50. T. Pietschmann, V. Lohmann, G. Rutter, K. Kurpanek, and R. Bartenschlager, “Characterization of cell lines carrying self-replicating hepatitis C virus RNAs,” Journal of Virology, vol. 75, no. 3, pp. 1252–1264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Krieger, V. Lohmann, and R. Bartenschlager, “Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations,” Journal of Virology, vol. 75, no. 10, pp. 4614–4624, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Lohmann, F. Körner, A. Dobierzewska, and R. Bartenschlager, “Mutations in hepatitis C virus RNAs conferring cell culture adaptation,” Journal of Virology, vol. 75, no. 3, pp. 1437–1449, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Kato, T. Date, M. Miyamoto et al., “Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon,” Gastroenterology, vol. 125, no. 6, pp. 1808–1817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Wakita, T. Pietschmann, T. Kato et al., “Production of infectious hepatitis C virus in tissue culture from a cloned viral genome,” Nature Medicine, vol. 11, no. 7, pp. 791–796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. B. D. Lindenbach, M. J. Evans, A. J. Syder et al., “Virology: complete replication of hepatitis C virus in cell culture,” Science, vol. 309, no. 5734, pp. 623–626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. B. D. Lindenbach, P. Meuleman, A. Ploss et al., “Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 10, pp. 3805–3809, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Kato, K. Mori, K. I. Abe et al., “Efficient replication systems for hepatitis C virus using a new human hepatoma cell line,” Virus Research, vol. 146, no. 1-2, pp. 41–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Kambara, T. Fukuhara, M. Shiokawa et al., “Establishment of a novel permissive cell line for the propagation of hepatitis C virus by expression of microRNA miR122,” Journal of Virology, vol. 86, no. 3, pp. 1382–1393, 2012. View at Publisher · View at Google Scholar
  59. T. Shimakami, D. Yamane, R.K. Jangra et al., “Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 3, pp. 941–946, 2012. View at Publisher · View at Google Scholar
  60. J. Bukh, “A critical role for the chimpanzee model in the study of hepatitis C,” Hepatology, vol. 39, no. 6, pp. 1469–1475, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Farci, H. J. Alter, S. Govindarajan et al., “Lack of protective immunity against reinfection with hepatitis C virus,” Science, vol. 258, no. 5079, pp. 135–140, 1992. View at Scopus
  62. A. M. Prince, B. Brotman, T. Huima, D. Pascual, M. Jaffery, and G. Inchauspe, “Immunity in hepatitis C infection,” Journal of Infectious Diseases, vol. 165, no. 3, pp. 438–443, 1992. View at Scopus
  63. R. Q. Yan, J. J. Su, D. R. Huang, Y. C. Gan, C. Yang, and G. H. Huang, “Human hepatitis B virus and hepatocellular carcinoma II. Experimental induction of hepatocellular carcinoma in tree shrews exposed to hepatitis B virus and aflatoxin B1,” Journal of Cancer Research and Clinical Oncology, vol. 122, no. 5, pp. 289–295, 1996. View at Scopus
  64. E. Walter, R. Keist, B. Niederöst, I. Pult, and H. E. Blum, “Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo,” Hepatology, vol. 24, no. 1, pp. 1–5, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. C. Xie, J. I. Riezu-Boj, J. J. Lasarte et al., “Transmission of hepatitis C virus infection to tree shrews,” Virology, vol. 244, no. 2, pp. 513–520, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Zhao, Z. Y. Tang, B. Klumpp et al., “Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection,” Journal of Clinical Investigation, vol. 109, no. 2, pp. 221–232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. D. F. Mercer, D. E. Schiller, J. F. Elliott et al., “Hepatitis C virus replication in mice with chimeric human livers,” Nature Medicine, vol. 7, no. 8, pp. 927–933, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Meuleman and G. Leroux-Roels, “The human liver-uPA-SCID mouse: a model for the evaluation of antiviral compounds against HBV and HCV,” Antiviral Research, vol. 80, no. 3, pp. 231–238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Vanwolleghem, J. Bukh, P. Meuleman et al., “Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain,” Hepatology, vol. 47, no. 6, pp. 1846–1855, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Ploss, M. J. Evans, V. A. Gaysinskaya et al., “Human occludin is a hepatitis C virus entry factor required for infection of mouse cells,” Nature, vol. 457, no. 7231, pp. 882–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Dorner, J. A. Horwitz, J. B. Robbins et al., “A genetically humanized mouse model for hepatitis C virus infection,” Nature, vol. 474, no. 7350, pp. 208–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. W. C. Carcamo, M. Satoh, H. Kasahara et al., “Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells,” PLoS ONE, vol. 6, no. 12, Article ID e29690, 2011. View at Publisher · View at Google Scholar
  73. G. Covini, W. C. Carcamo, E. Bredi, C. A. von Muhlen, M. Colombo, and E. K. Chan, “Cytoplasmic rods and rings autoantibodies developed during pegylated interferon and ribavirin therapy in patients with chronic hepatitis C,” Antiretroviral Therapy. In press. View at Publisher · View at Google Scholar