About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 362473, 8 pages
http://dx.doi.org/10.1155/2012/362473
Research Article

Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Therapy Promotes Functional Recovery of Contused Rat Spinal Cord through Enhancement of Endogenous Cell Proliferation and Oligogenesis

1Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea
2Department of Neurosurgery, The Catholic University of Korea, Seoul, Republic of Korea
3Medipost Biomedical Research Institute, Medipost Co., Ltd., Seoul, Republic of Korea

Received 23 June 2011; Accepted 29 September 2011

Academic Editor: Ken-ichi Isobe

Copyright © 2012 Sang In Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Kurnellas, A. Nicot, G. E. Shull, and S. Elkabes, “Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury,” FASEB Journal, vol. 19, no. 2, pp. 298–300, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. W. McDonald and V. Belegu, “Demyelination and remyelination after spinal cord injury,” Journal of Neurotrauma, vol. 23, no. 3-4, pp. 345–359, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. L. J. Rosenberg and J. R. Wrathall, “Quantitative analysis of acute axonal pathology in experimental spinal cord contusion,” Journal of Neurotrauma, vol. 14, no. 11, pp. 823–838, 1997. View at Scopus
  4. L. Brundin, H. Brismar, A. I. Danilov, T. Olsson, and C. B. Johansson, “Neural stem cells: a potential source for remyelination in neuroinflammatory disease,” Brain Pathology, vol. 13, no. 3, pp. 322–328, 2003. View at Scopus
  5. G. Martino and S. Pluchino, “The therapeutic potential of neural stem cells,” Nature Reviews Neuroscience, vol. 7, no. 5, pp. 395–406, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. O. Lindvall and Z. Kokaia, “Stem cells for the treatment of neurological disorders,” Nature, vol. 441, no. 7097, pp. 1094–1096, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. Kabatas and Y. D. Teng, “Potential roles of the neural stem cell in the restoration of the injured spinal cord: review of the literature,” Turkish Neurosurgery, vol. 20, no. 2, pp. 103–110, 2010. View at Scopus
  8. T. L. Ben-Shaanan, T. Ben-Hur, and J. Yanai, “Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain,” Molecular Psychiatry, vol. 13, no. 2, pp. 222–231, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Ogawa, K. Sawamoto, T. Miyata et al., “Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats,” Journal of Neuroscience Research, vol. 69, no. 6, pp. 925–933, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. Y. I. Tarasenko, J. Gao, L. Nie et al., “Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior,” Journal of Neuroscience Research, vol. 85, no. 1, pp. 47–57, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. E. Yang, C. W. Ha, M. H. Jung et al., “Mesenchymal stem/progenitor cells developed in cultures from UC blood,” Cytotherapy, vol. 6, no. 5, pp. 476–486, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. P. R. Sanberg, A. E. Willing, S. Garbuzova-Davis et al., “Umbilical cord blood-derived stem cells and brain repair,” Annals of the New York Academy of Sciences, vol. 1049, pp. 67–83, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. R. Pineda, N. Rubio, P. Akerud et al., “Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells,” Gene Therapy, vol. 14, no. 2, pp. 118–128, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. Chen, Y. Li, M. Katakowski et al., “Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat,” Journal of Neuroscience Research, vol. 73, no. 6, pp. 778–786, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. C. Wollert and H. Drexler, “Clinical applications of stem cells for the heart,” Circulation Research, vol. 96, no. 2, pp. 151–163, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. P. J. Horner and F. H. Gage, “Regenerating the damaged central nervous system,” Nature, vol. 407, no. 6807, pp. 963–970, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. B. H. Dobkin and L. A. Havton, “Basic advances and new avenues in therapy of spinal cord injury,” Annual Review of Medicine, vol. 55, pp. 255–282, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection,” Experimental Neurology, vol. 139, no. 2, pp. 244–256, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “A sensitive and reliable locomotor rating scale for open field testing in rats,” Journal of Neurotrauma, vol. 12, no. 1, pp. 1–21, 1995. View at Scopus
  21. L. J. Zai and J. R. Wrathall, “Cell proliferation and replacement following contusive spinal cord injury,” Glia, vol. 50, no. 3, pp. 247–257, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. W. Yoo, S. S. Kim, S. Y. Lee et al., “Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model,” Experimental and Molecular Medicine, vol. 40, no. 4, pp. 387–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. J. Rosenberg, L. J. Zai, and J. R. Wrathall, “Chronic alterations in the cellular composition of spinal cord white matter following contusion injury,” Glia, vol. 49, no. 1, pp. 107–120, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. H. Yang, P. Lu, H. M. McKay et al., “Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury,” Journal of Neuroscience, vol. 26, no. 8, pp. 2157–2166, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. L. J. Zai, S. Yoo, and J. R. Wrathall, “Increased growth factor expression and cell proliferation after contusive spinal cord injury,” Brain Research, vol. 1052, no. 2, pp. 147–155, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. C. P. Hofstetter, E. J. Schwarz, D. Hess et al., “Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2199–2204, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. Z. M. Zhao, H. J. Li, H. Y. Liu et al., “Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats,” Cell Transplantation, vol. 13, no. 2, pp. 113–122, 2004. View at Scopus
  28. J. R. Munoz, B. R. Stoutenger, A. P. Robinson, J. L. Spees, and D. J. Prockop, “Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18171–18176, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. R. McKay, “Stem cells in the central nervous system,” Science, vol. 276, no. 5309, pp. 66–71, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. M. B. Newman, A. E. Willing, J. J. Manresa, C. D. Sanberg, and P. R. Sanberg, “Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair,” Experimental Neurology, vol. 199, no. 1, pp. 201–208, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Erices, P. Conget, and J. J. Minguell, “Mesenchymal progenitor cells in human umbilical cord blood,” British Journal of Haematology, vol. 109, no. 1, pp. 235–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Li, J. Chen, X. G. Chen et al., “Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery,” Neurology, vol. 59, no. 4, pp. 514–523, 2002. View at Scopus
  33. Q. M. Li, Y. M. Fu, Z. Y. Shan et al., “MSCs guide neurite directional extension and promote oligodendrogenesis in NSCs,” Biochemical and Biophysical Research Communications, vol. 384, no. 3, pp. 372–377, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus