About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 376428, 8 pages
http://dx.doi.org/10.1155/2012/376428
Research Article

Antilisterial Activity of Nisin-Like Bacteriocin-Producing Lactococcus lactis subsp. lactis Isolated from Traditional Sardinian Dairy Products

Department of Experimental Biology, Section of Hygiene, University of Cagliari, Cittadella Universitaria, S.S. 554, Km. 4,5, 09042 Monserrato, Italy

Received 30 November 2011; Accepted 11 January 2012

Academic Editor: Tai Hoon Kim

Copyright © 2012 Sofia Cosentino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Paul Ross, S. Morgan, and C. Hill, “Preservation and fermentation: past, present and future,” International Journal of Food Microbiology, vol. 79, no. 1-2, pp. 3–16, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. F. J. Carr, D. Chill, and N. Maida, “The lactic acid bacteria: a literature survey,” Critical Reviews in Microbiology, vol. 28, no. 4, pp. 281–370, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. A. Gálvez, H. Abriouel, R. L. López, and N. B. Omar, “Bacteriocin-based strategies for food biopreservation,” International Journal of Food Microbiology, vol. 120, no. 1-2, pp. 51–70, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. W. H. Holzapfel, “Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes,” International Journal of Food Microbiology, vol. 24, no. 3, pp. 343–362, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Cleveland, T. J. Montville, I. F. Nes, and M. L. Chikindas, “Bacteriocins: safe, natural antimicrobials for food preservation,” International Journal of Food Microbiology, vol. 71, no. 1, pp. 1–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. L. De Vuyst and E. Vandamme, “Antimicrobial potential of lactic acid bacteria,” in Bacteriocins of Lactic Acid Bacteria, L. De Vuyst and E. Vandamme, Eds., pp. 91–142, Blackie, London, UK, 1994.
  7. L. De Vuyst and F. Leroy, “Bacteriocins from lactic acid bacteria: production, purification, and food applications,” Journal of Molecular Microbiology and Biotechnology, vol. 13, no. 4, pp. 194–199, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Allende, E. Aguayo, and F. Artés, “Microbial and sensory quality of commercial fresh processed red lettuce throughout the production chain and shelf life,” International Journal of Food Microbiology, vol. 91, no. 2, pp. 109–117, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. P. Ryan, M. C. Rea, C. Hill, and R. P. Ross, “An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147,” Applied and Environmental Microbiology, vol. 62, no. 2, pp. 612–619, 1996. View at Scopus
  10. M. Gandhi and M. L. Chikindas, “Listeria: a foodborne pathogen that knows how to survive,” International Journal of Food Microbiology, vol. 113, no. 1, pp. 1–15, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. B. Cole, M. V. Jones, and C. Holyoak, “The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes,” Journal of Applied Bacteriology, vol. 69, no. 1, pp. 63–72, 1990. View at Scopus
  12. P. S. Mead, E. F. Dunne, L. Graves et al., “Nationwide outbreak of listeriosis due to contaminated meat,” Epidemiology and Infection, vol. 134, no. 4, pp. 744–751, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. McLauchlin, “The pathogenicity of Listeria monocytogenes: a public health perspective,” Reviews in Medical Microbiology, vol. 8, no. 1, pp. 1–14, 1997. View at Scopus
  14. M. Rudolf and S. Scherer, “High incidence of Listeria monocytogenes in European red smear cheese,” International Journal of Food Microbiology, vol. 63, no. 1-2, pp. 91–98, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Liu, P. O'Conner, P. D. Cotter, C. Hill, and R. P. Ross, “Controlling Listeria monocytogenes in Cottage cheese through heterologous production of enterocin a by Lactococcus lactis,” Journal of Applied Microbiology, vol. 104, no. 4, pp. 1059–1066, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Samelis, A. Kakouri, K. J. Rogga, I. N. Savvaidis, and M. G. Kontominas, “Nisin treatments to control Listeria monocytogenes post-processing contamination on Anthotyros, a traditional Greek whey cheese, stored at 4°C in vacuum packages,” Food Microbiology, vol. 20, no. 6, pp. 661–669, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. P. M. Muriana, “Bacteriocins for control of Listeria spp. in food,” Journal of Food Protection, vol. 59, no. 3, pp. 54–63, 1996. View at Scopus
  18. Food and Drug Administration, “Nisin preparation: affirmation of GRAS status as a direct human food ingredient,” Federal Registry, vol. 53, pp. 11247–11251, 1998.
  19. J. Delves-Broughton, “Nisin and its uses as a food preservative,” Food Technology, vol. 44, pp. 100–117, 1990.
  20. R. Trias, E. Badosa, E. Montesinos, and L. Bañeras, “Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables,” International Journal of Food Microbiology, vol. 127, no. 1-2, pp. 91–98, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. B. Pisano, M. E. Fadda, M. Deplano, A. Corda, and S. Cosentino, “Microbiological and chemical characterization of Fiore Sardo, a traditional Sardinian cheese made from ewe's milk,” International Journal of Dairy Technology, vol. 59, no. 3, pp. 171–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Y. Pu, M. Dobos, G. K. Y. Limsowtin, and I. B. Powell, “Integrated polymerase chain reaction-based procedures for the detection and identification of species and subspecies of the Gram-positive bacterial genus Lactococcus,” Journal of Applied Microbiology, vol. 93, no. 2, pp. 353–361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. U. Schillinger and F. K. Lücke, “Antibacterial activity of Lactobacillus sake isolated from meat,” Applied and Environmental Microbiology, vol. 55, no. 8, pp. 1901–1906, 1989. View at Scopus
  24. S. Bover-Cid and W. H. Holzapfel, “Improved screening procedure for biogenic amine production by lactic acid bacteria,” International Journal of Food Microbiology, vol. 53, no. 1, pp. 33–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. Clinical and Laboratory Standard Institute, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, Clinical and Laboratory Standard Institute, Wayne, Ill, USA, 10th edition, (CLSI document M02-A10), 2009.
  26. Clinical and Laboratory Standard Institute, Performance Standards for Antimicrobial Disk Susceptibility Tests, 12th Informational Supplement, Clinical and Laboratory Standard Institute, Wayne, Ill, USA, (CLSI document M100-S20), 2010.
  27. M. B. T. Ortolani, P. M. Moraes, L. M. Perin et al., “Molecular identification of naturally occurring bacteriocinogenic and bacteriocinogenic-like lactic acid bacteria in raw milk and soft cheese,” Journal of Dairy Science, vol. 93, no. 7, pp. 2880–2886, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. L. A. Nero, M. R. Mattos, V. Beloti, M. A. F. Barros, M. B. T. Ortolani, and B. D. G. M. Franco, “Autochthonous microbiota of raw milk with antagonistic activity against Listeria monocytogenes and salmonella enteritidis,” Journal of Food Safety, vol. 29, no. 2, pp. 261–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Coventry, J. B. Gordon, A. Wilcock et al., “Detection of bacteriocins of lactic acid bacteria isolated from foods and comparison with pediocin and nisin,” Journal of Applied Microbiology, vol. 83, no. 2, pp. 248–258, 1997. View at Scopus
  30. A. Alegría, S. Delgado, C. Roces, B. López, and B. Mayo, “Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk,” International Journal of Food Microbiology, vol. 143, no. 1-2, pp. 61–66, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. N. Benkerroum, H. Oubel, M. Zahar, S. Dlia, and A. Filali-Maltouf, “Isolation of a bacteriocin-producing Lactococcus lactis subsp. lactis and applicatin to control Listeria monocytogenes in Moroccan jben,” Journal of Applied Microbiology, vol. 89, no. 6, pp. 960–968, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. W. M. Deepika Priyadarshani and S. K. Rakshit, “Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine),” International Journal of Food Science and Technology, vol. 46, no. 10, pp. 2062–2069, 2011. View at Publisher · View at Google Scholar
  33. S. Novella-Rodríguez, M. T. Veciana-Nogués, A. X. Roig-Sagués, A. J. Trujillo-Mesa, and M. C. Vidal-Carou, “Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening,” Journal of Dairy Science, vol. 85, no. 10, pp. 2471–2478, 2002. View at Scopus
  34. C. M. A. P. Franz, W. H. Holzapfel, and M. E. Stiles, “Enterococci at the crossroads of food safety?” International Journal of Food Microbiology, vol. 47, no. 1-2, pp. 1–24, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. B. D. Jett, M. M. Huycke, and M. S. Gilmore, “Virulence of Enterococci,” Clinical Microbiology Reviews, vol. 7, no. 4, pp. 462–478, 1994. View at Scopus
  36. P. A. Maragkoudakis, K. C. Mountzouris, D. Psyrras et al., “Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis,” International Journal of Food Microbiology, vol. 130, no. 3, pp. 219–226, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. S. P. Borriello, W. P. Hammes, W. Holzapfel et al., “Safety of probiotics that contain lactobacilli or bifidobacteria,” Clinical Infectious Diseases, vol. 36, no. 6, pp. 775–780, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. S. Salminen, A. Von Wright, L. Morelli et al., “Demonstration of safety of probiotics—a review,” International Journal of Food Microbiology, vol. 44, no. 1-2, pp. 93–106, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Mathur and R. Singh, “Antibiotic resistance in food lactic acid bacteria—a review,” International Journal of Food Microbiology, vol. 105, no. 3, pp. 281–295, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. V. Perreten, F. Schwarz, L. Cresta, M. Boeglin, G. Dasen, and M. Teuber, “Antibiotic resistance spread in food,” Nature, vol. 389, no. 6653, pp. 801–802, 1997. View at Scopus
  41. M. S. Ammor, A. B. Flórez, A. H. A. M. Van Hoek et al., “Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria,” Journal of Molecular Microbiology and Biotechnology, vol. 14, no. 1–3, pp. 6–15, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. European Food Safety Authority, “EFSA Scientific Colloquium Summary Report. QPS: qualified presumption of safety of microorganisms in food and feed,” Tech. Rep., European Food Safety Authority, Brussels, Belgium, 2004.
  43. European Food Safety Authority, “The maintenance of the list of QPS microorganisms intentionally added to food or feed,” European Food Safety Authority Journal, vol. 923, pp. 1–48, 2008.
  44. P. Rodríguez-Alonso, C. Fernández-Otero, J. A. Centeno, and J. I. Garabal, “Antibiotic resistance in lactic acid bacteria and micrococcaceae/ staphylococcaceae isolates from artisanal raw milk cheeses, and potential implications on cheese making,” Journal of Food Science, vol. 74, no. 6, pp. M284–M293, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. C. Liu, Z. Y. Zhang, K. Dong, J. P. Yuan, and X. K. Guo, “Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs,” Biomedical and Environmental Sciences, vol. 22, no. 5, pp. 401–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Devirgiliis, S. Barile, A. Caravelli, D. Coppola, and G. Perozzi, “Identification of tetracycline- and erythromycin-resistant Gram-positive cocci within the fermenting microflora of an Italian dairy food product,” Journal of Applied Microbiology, vol. 109, no. 1, pp. 313–323, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. R. Temmerman, B. Pot, G. Huys, and J. Swings, “Identification and antibiotic susceptibility of bacterial isolates from probiotic products,” International Journal of Food Microbiology, vol. 81, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. A. S. Hummel, C. Hertel, W. H. Holzapfel, and C. M. A. P. Franz, “Antibiotic resistances of starter and probiotic strains of lactic acid bacteria,” Applied and Environmental Microbiology, vol. 73, no. 3, pp. 730–739, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. S. Ammor, A. Belén Flórez, and B. Mayo, “Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria,” Food Microbiology, vol. 24, no. 6, pp. 559–570, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. A. B. Flórez, M. S. Ammor, and B. Mayo, “Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci,” International Journal of Food Microbiology, vol. 121, no. 2, pp. 189–194, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus