About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 402418, 11 pages
http://dx.doi.org/10.1155/2012/402418
Review Article

How to Deal with the Upcoming Challenges in GMO Detection in Food and Feed

Platform Biotechnology and Molecular Biology, Wetenschappelijk Instituut Volksgezondheid-Institut Scientifique de Santé Publique (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussel, Belgium

Received 30 March 2012; Accepted 13 September 2012

Academic Editor: Joel W. Ochieng

Copyright © 2012 Sylvia R. M. Broeders et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. James, “Global status of commercialized biotech/GM crops: 2011. Executive summary,” ISAAA Brief 43, 2011.
  2. M. Dymond and K. Hurr, The Global Status of Commercialised Genetically Modified Plants (1 July 2008—31 December 2009), Plant Imports, MAF Biosecurity, Wellington, New Zealand, 2010.
  3. European Parliament, “Commission regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC,” Official Journal of the European Union, vol. L 268, pp. 24–28, 2003.
  4. C. E. Bean, “Japan Biotechnology MAFF's Biotech food labeling standards (revised),” GAIN Report JA2010, USDA, GAIN, 2002.
  5. G. W. Wiggin, “Russian federation. Food and agricultural import regulations and standards. New food safety and GMO labeling requirements,” GAIN Report RS2020, USDA, 2002.
  6. A. J. Stein and E. Rodriguez-Cerezo, “The global pipeline of new GM crops. Implications of asynchroneous approval for international trade,” EU23846-EN, 2009.
  7. L. de Suza, Brazilian Virus-Resistant Beans, BIOfortified, 2011.
  8. J. L. Fox, “Puzzling industry response to ProdiGene fiasco,” Nature Biotechnology, vol. 21, no. 1, pp. 3–4, 2003. View at Scopus
  9. APHIS, Biotechnology. Noncompliance History, United States Department of Agriculture, Animal and Plant Health Inspection Service, USDA, 2011.
  10. M. L. Zapiola, C. K. Campbell, M. D. Butler, and C. A. Mallory-Smith, “Escape and establishment of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study,” Journal of Applied Ecology, vol. 45, no. 2, pp. 486–494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Vermij, “Liberty Link rice raises specter of tightened regulations,” Nature Biotechnology, vol. 24, no. 11, pp. 1301–1302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Holst-Jensen, “Testing for genetically modified organisms (GMOs): past, present and future perspectives,” Biotechnology Advances, vol. 27, no. 6, pp. 1071–1082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Zhang and J. Guo, “The development and standardization of testing methods for genetically modified organisms and their derived products,” Journal of Integrative Plant Biology, vol. 53, no. 7, pp. 539–551, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Dong, L. Yang, K. Shen et al., “GMDD: a database of GMO detection methods,” BMC Bioinformatics, vol. 9, article 260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Miraglia, K. G. Berdal, C. Brera et al., “Detection and traceability of genetically modified organisms in the food production chain,” Food and Chemical Toxicology, vol. 42, no. 7, pp. 1157–1180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Holst-Jensen, M. De Loose, and G. Van Den Eede, “Coherence between legal requirements and approaches for detection of genetically modified organisms (GMOs) and their derived products,” Journal of Agricultural and Food Chemistry, vol. 54, no. 8, pp. 2799–2809, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Anklam, F. Gadani, P. Heinze, H. Pijnenburg, and G. D. Van Eede, “Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products,” European Food Research and Technology, vol. 214, no. 1, pp. 3–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Querci, M. Van den Bulcke, J. Žel, G. Van Den Eede, and H. Broll, “New approaches in GMO detection,” Analytical and Bioanalytical Chemistry, vol. 396, no. 6, pp. 1991–2002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. K. Deisingh and N. Badrie, “Detection approaches for genetically modified organisms in foods,” Food Research International, vol. 38, no. 6, pp. 639–649, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Marmiroli, E. Maestri, M. Gullì et al., “Methods for detection of GMOs in food and feed,” Analytical and Bioanalytical Chemistry, vol. 392, no. 3, pp. 369–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Ovesna, K. Demnerova, and V. Pouchova, “GMO detection,” in Food Microbiology and Food Safety, pp. 515–532, 2009.
  22. L. Grohmann, “Detection of genetically modified plants in seeds, food and feed,” Biotechnology in Agriculture and Forestry, vol. 64, no. 1, pp. 117–136, 2010.
  23. Joint Research Centre, “Compendium of reference methods for GMO analysis,” Tech. Rep. EUR 24526 EN, 2011.
  24. J. Mackay and O. Landt, “Real-time PCR fluorescent chemistries,” in Protocols for Nucleic Acid Analysis by Nonradioactive Probes, E. Hilario and J. Mackay, Eds., Methods in Molecular Biology, pp. 237–261, Humana Press, Totwa, NJ, USA, 2nd edition, 2007.
  25. M. B. Gašparič, K. Cankar, J. Žel, and K. Gruden, “Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms,” BMC Biotechnology, vol. 8, article 26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. B. Gašparič, T. Tengs, J. L. La Paz et al., “Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection,” Analytical and Bioanalytical Chemistry, vol. 396, no. 6, pp. 2023–2029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Life Technologies, “TaqMan and SYBR Green Chemistries,” http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/real-time-pcr/taqman-and-sybr-green-chemistries.html.
  28. E. Barbau-Piednoir, A. Lievens, G. Mbongolo-Mbella et al., “SYBR Green qPCR screening methods for the presence of “35S promoter” and “NOS terminator” elements in food and feed products,” European Food Research and Technology, vol. 230, no. 3, pp. 383–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Jiang, L. Yang, J. Rao et al., “Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985,” Journal of the Science of Food and Agriculture, vol. 90, no. 3, pp. 402–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Baeumler, D. Wulff, L. Tagliani, and P. Song, “A real-time quantitative PCR detection method specific to widestrike transgenic cotton (Event 281-24-236/3006-210-23),” Journal of Agricultural and Food Chemistry, vol. 54, no. 18, pp. 6527–6534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. European Union Reference Laboratory for GM Food and Feed and Feed, “Event-specific method for the quantification of sugar beet line H7-1 using Real-time PCR: protocol,” Tech. Rep. CRLVL28/04VP, 2006.
  32. H. H. Dörries, I. Remus, A. Grönewald, C. Grönewald, and K. Berghof-Jäger, “Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs),” Analytical and Bioanalytical Chemistry, vol. 396, no. 6, pp. 2043–2054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. I. J. Lu, C. H. Lin, and T. M. Pan, “Establishment of a system based on universal multiplex-PCR for screening genetically modified crops,” Analytical and Bioanalytical Chemistry, vol. 396, no. 6, pp. 2055–2064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Bahrdt, A. B. Krech, A. Wurz, and D. Wulff, “Validation of a newly developed hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed,” Analytical and Bioanalytical Chemistry, vol. 396, no. 6, pp. 2103–2112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Guo, L. Yang, L. Chen et al., “MPIC: a high-throughput analytical method for multiple DNA targets,” Analytical Chemistry, vol. 83, no. 5, pp. 1579–1586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Hamels, T. Glouden, K. Gillard et al., “A PCR-microarray method for the screening of genetically modified organisms,” European Food Research and Technology, vol. 228, no. 4, pp. 531–541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Nadal, T. Esteve, and M. Pla, “Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for gmo screening-assay for simultaneous detection of five genetically modified cotton events and species,” Journal of AOAC International, vol. 92, no. 3, pp. 765–772, 2009. View at Scopus
  38. A. Holst-Jensen, Y. Bertheau, M. de Loose, et al., “Detecting un-authorized genetically modified organisms (GMOs) and derived materials,” Biotechnology Advances. In press. View at Publisher · View at Google Scholar
  39. J. T. Odell, F. Nagy, and N. H. Chua, “Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter,” Nature, vol. 313, no. 6005, pp. 810–812, 1985. View at Scopus
  40. A. Depicker, S. Stachel, and P. Dhaese, “Nopaline synthase: transcript mapping and DNA sequence,” Journal of Molecular and Applied Genetics, vol. 1, no. 6, pp. 561–573, 1982. View at Scopus
  41. A. Wehrmann, A. Van Vliet, C. Opsomer, J. Botterman, and A. Schulz, “The similarities of bar and pat gene products make them equally applicable for plant engineers,” Nature Biotechnology, vol. 14, no. 10, pp. 1274–1278, 1996. View at Scopus
  42. G. Kishore, D. Shah, S. Padgette, et al., “5-enolpyruvylshikimate 3-phosphate synthase,” in Biochemistry to Genetic Engineering of Glyphosate Tolerance, American Chemical Society, P. A. Hedin, J. J. Menn, and R. M. Hollingworth, Eds., pp. 37–48, 1988.
  43. S. R. Padgette, D. B. Re, G. F. Barry, et al., “New weed control opportunities: development of soybeans with a Roundup Ready gene,” in Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects, pp. 53–84, 1996.
  44. Agbios, http://www.cera-gmc.org/?action=gm_crop_database&.
  45. GMO Compass, http://www.gmo-compass.org/eng/home/.
  46. M. Sanger, S. Daubert, and R. M. Goodman, “Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter,” Plant Molecular Biology, vol. 14, no. 3, pp. 433–443, 1990. View at Publisher · View at Google Scholar · View at Scopus
  47. D. McElroy, W. Zhang, J. Cao, and R. Wu, “Isolation of an efficient actin promoter for use in rice transformation,” The Plant Cell, vol. 2, no. 2, pp. 163–171, 1990. View at Scopus
  48. A. H. Christensen, R. A. Sharrock, and P. H. Quail, “Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation,” Plant Molecular Biology, vol. 18, no. 4, pp. 675–689, 1992. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Gonsalves, “Transgenic papaya in Hawaii and beyond,” AgBioForum, vol. 7, no. 1-2, pp. 36–40, 2004. View at Scopus
  50. W. Cai, C. Gonsalves, P. Tennant et al., “A protocol for efficient transformation and regeneration of Carica papaya L.,” In Vitro Cellular and Developmental Biology, vol. 35, no. 1, pp. 61–69, 1999. View at Scopus
  51. P. F. Tennant, M. H. Ahmad, and D. Gonsalves, “Transformation of Carica papaya L. with virus coat protein genes for studies on resistance to Papaya ringspot virus from Jamaica,” Tropical Agriculture, vol. 79, no. 2, pp. 105–113, 2002. View at Scopus
  52. N. Acciarri, G. Vitelli, S. Arpaia, G. Mennella, F. Sunseri, and G. L. Rotino, “Transgenic resistance to the Colorado potato beetle in Bt-expressing eggplant fields,” HortScience, vol. 35, no. 4, pp. 722–725, 2000. View at Scopus
  53. H. J. J. Koehorst-van Putten, E. Sudarmonowati, M. Herman et al., “Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia,” Transgenic Research, vol. 21, no. 1, pp. 39–50, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Sriroth, K. Piyachomkwan, V. Santisopasri, and C. G. Oates, “Environmental conditions during root development: drought constraint on cassava starch quality,” Euphytica, vol. 120, no. 1, pp. 95–101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Taverniers, N. Papazova, Y. Bertheau, M. De Loose, and A. Holst-Jensen, “Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework,” Environmental Biosafety Research, vol. 7, no. 4, pp. 197–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. OECD, OECD Guidance for the Designation of a Unique Identifier for transgenic plants, vol. 23, 2002.
  57. X. Ye, S. Al-Babili, A. Klöti, et al., “Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm,” Science, vol. 287, no. 5451, pp. 303–305, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Beyer, “Golden Rice and “Golden” crops for human nutrition,” New Biotechnology, vol. 27, no. 5, pp. 478–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. Dow AgroSciences, http://www.dowagro.com/.
  60. M. Lusser, C. Parisi, D. Plan, et al., “New plant breedings techniques. State-of-the-art and prospects for commercial development,” European Commisson EUR 24760 EN, 2011.
  61. European Union Reference Laboratory for GM Food and Feed (EU-RL GMFF): Status of dossier web-page, http://gmo-crl.jrc.ec.europa.eu/.
  62. S. Bruderer, K. E. Leitner, and J. Lindenmeyer, Genetically Modified (GM) Crops: Molecular and Regulatory Details, BATS, Centre for Biosafety and Sustainability, 2003.
  63. H. U. Waiblinger, B. Ernst, A. Anderson, and K. Pietsch, “Validation and collaborative study of a P35S and T-nos duplex real-time PCR screening method to detect genetically modified organisms in food products,” European Food Research and Technology, vol. 226, no. 5, pp. 1221–1228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Fernandez, C. Charles-Delobel, A. Geldreich et al., “Quantification of the 35S promoter in DNA extracts from genetically modified organisms using real-time polymerase chain reaction and specificity assessment on various genetically modified organisms, part I: operating procedure,” Journal of AOAC International, vol. 88, no. 2, pp. 547–557, 2005. View at Scopus
  65. M. Höhne, C. R. Santisi, and R. Meyer, “Real-time multiplex PCR: an accurate method for the detection and quantification of 35S-CaMV promoter in genetically modified maize-containing food,” European Food Research and Technology, vol. 215, no. 1, pp. 59–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Corbisier, S. Trapmann, D. Gancberg et al., “Quantitative determination of Roundup Ready soybean (Glycine max) extracted from highly processed flour,” Analytical and Bioanalytical Chemistry, vol. 383, no. 2, pp. 282–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Reiting, H. Broll, H. U. Waiblinger, and L. Grohmann, “Collaborative study of a T-nos real-time PCR method for screening of genetically modified organisms in food products,” Journal für Verbraucherschutz und Lebensmittelsicherheit, vol. 2, no. 2, pp. 116–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Barbau-Piednoir, A. Lievens, E. Vandermassen, et al., “Four new SYBR Green qPCR screening methods for the detection of Roundup Ready , LibertyLink , and CryIAb traits in genetically modified products,” European Food Research and Technology, vol. 234, no. 1, pp. 13–23, 2012.
  69. L. Grohmann, C. B. Nieweler, A. Nemeth, and H. U. Waiblinger, “Collaborative trial validation studies of real-time PCR-based GMO Screening methods for detection of the bar gene and the ctp2-cp4epsps construct,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 8913–8920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Z. Dinon, T. W. Prins, J. P. Van Dijk, A. C. M. Arisi, I. M. J. Scholtens, and E. J. Kok, “Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms,” Analytical and Bioanalytical Chemistry, vol. 400, no. 5, pp. 1433–1442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Van den Bulcke, A. Lievens, E. Barbau-Piednoir et al., “A theoretical introduction to “combinatory SYBR Green qPCR Screening”, a matrix-based approach for the detection of materials derived from genetically modified plants,” Analytical and Bioanalytical Chemistry, vol. 396, no. 6, pp. 2113–2123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Broeders, N. Papazova, M. Van den Bulcke, et al., “Development of a molecular platform for GMO detection in food and feed on the basis of, “combinatory qPCR” technology,” in Polymerase Chain Reaction, P. Hernández-Rodríguez and A. P. R. Gome, Eds., vol. 1, pp. 363–404, InTech, Rijeka, Croatia, 2012.
  73. E. G. Mbongolo Mbella, A. Lievens, E. Barbau-Piednoir et al., “SYBR Green qPCR methods for detection of endogenous reference genes in commodity crops: a step ahead in combinatory screening of genetically modified crops in food and feed products,” European Food Research and Technology, vol. 232, no. 3, pp. 485–496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Vaïtilingom, H. Pijnenburg, F. Gendre, and P. Brignon, “Real-time quantitative PCR detection of genetically modified maximizer maize and roundup ready soybean in some representative foods,” Journal of Agricultural and Food Chemistry, vol. 47, no. 12, pp. 5261–5266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Yang, J. Chen, C. Huang et al., “Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons,” The Plant Cell Reports, vol. 24, no. 4, pp. 237–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Broeders, E. Barbau-Piednoir, E. Vandermassen, F. Debode, M. Mazzara, and N. Roosens, “New SYBRGreen methods targeting promoter sequences used for screening of several GM events pending for authorisation in Europe,” submitted.
  77. European Parliament, “Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed,” Official Journal of the European Union, vol. L 268, pp. 1–23, 2003.
  78. European Commission, “Commission Regulation (EU) No 619/2011 of 24 June 2011 laying down the methods of sampling and analysis for the official control of feed as regards presence of genetically modified material for which an authorisation procedure is pending or the authorisation of which has expired,” Official Journal of the European Union, vol. L166, pp. 9–15, 2011.
  79. T. Ruttink, R. Demeyer, E. Van Gulck et al., “Molecular toolbox for the identification of unknown genetically modified organisms,” Analytical and Bioanalytical Chemistry, vol. 396, no. 6, pp. 2073–2089, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. V. Thirulogachandar, P. Pandey, C. S. Vaishnavi, and M. K. Reddy, “An affinity-based genome walking method to find transgene integration loci in transgenic genome,” Analytical Biochemistry, vol. 416, no. 2, pp. 196–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. GAO, “Genetically engineered crops. Agencies are proposing changes to improve oversight, but could take additional steps to enhance coordination and monitoring,” Report GAO-09-60, United States Government Accountability Office, 2008.
  82. H. Akiyama, T. Watanabe, K. Wakabayashi et al., “Quantitative detection system for maize sample containing combined-trait genetically modified maize,” Analytical Chemistry, vol. 77, no. 22, pp. 7421–7428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. R. H. A. M. Vossen, E. Aten, A. Roos, and J. T. Den Dunnen, “High-resolution melting analysis (HRMA)—more than just sequence variant screening,” Human Mutation, vol. 30, no. 6, pp. 860–866, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. L. F. Gady, F. W. K. Hermans, M. H. B. J. Van de Wal, E. N. van Loo, R. G. F. Visser, and C. W. B. Bachem, “Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations,” Plant Methods, vol. 5, no. 1, article 13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. “Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC,” Official Journal of the European Union, vol. L 106, pp. 1–38, 2001.