About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 406273, 13 pages
http://dx.doi.org/10.1155/2012/406273
Review Article

The Annexin A2/S100A10 System in Health and Disease: Emerging Paradigms

1Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
2Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
3Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
4Department of Hematology, National Cancer Institute, Mexico City, Mexico
5Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
6Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
7Department of Pathology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA

Received 28 March 2012; Accepted 15 May 2012

Academic Editor: Lindsey A. Miles

Copyright © 2012 Nadia Hedhli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Moss and R. O. Morgan, “The annexins,” Genome Biology, vol. 5, no. 4, article 219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Gerke, C. E. Creutz, and S. E. Moss, “Annexins: linking Ca2+ signalling to membrane dynamics,” Nature Reviews Molecular Cell Biology, vol. 6, no. 6, pp. 449–461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Gerke and S. E. Moss, “Annexins: from structure to function,” Physiological Reviews, vol. 82, no. 2, pp. 331–371, 2002. View at Scopus
  4. F. Spano, G. Raugei, E. Palla, C. Colella, and M. Melli, “Characterization of the human lipocortin-2-encoding multigene family: its structure suggests the existence of a short amino acid unit undergoing duplication,” Gene, vol. 95, no. 2, pp. 243–251, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Ling, A. T. Jacovina, A. Deora et al., “Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo,” The Journal of Clinical Investigation, vol. 113, no. 1, pp. 38–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. T. Jacovina, A. B. Deora, Q. Ling et al., “Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2-dependent fibrinolysis,” The Journal of Clinical Investigation, vol. 119, no. 11, pp. 3384–3394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Waisman, “Annexin II tetramer: structure and function,” Molecular and Cellular Biochemistry, vol. 149-150, pp. 301–322, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Rescher and V. Gerke, “S100A10/p11: family, friends and functions,” Pflugers Archiv European Journal of Physiology, vol. 455, no. 4, pp. 575–582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Donato, “S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 7, pp. 637–668, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Réty, J. Sopkova, M. Renouard et al., “The crystal structure of a complex of p11 with the annexin II N-terminal peptide,” Nature Structural Biology, vol. 6, no. 1, pp. 89–95, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Cesarman-Maus and K. A. Hajjar, “Molecular mechanisms of fibrinolysis,” British Journal of Haematology, vol. 129, no. 3, pp. 307–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. A. Hajjar, “The molecular basis of fibrinolysis,” in Nathan and Oski's Hematology of Infancy and Childhood, S. H. Orkin, D. G. Nathan, D. Ginsburg, A. T. Look, D. E. Fisher, and S. E. Lux, Eds., pp. 1425–1447, Saunders Elsevier, Philadelphia, Pa, USA, 2009.
  13. K. A. Hajjar and J. Ruan, “Fibrinolysis and thrombolysis,” in Williams Hematology, K. Kaushansky, M. A. Lichtman, E. Beutler, T. J. Kipps, U. Seligsohn, and J. T. Prchal, Eds., pp. 2219–2246, McGraw-Hill, New York, NY, USA, 2010.
  14. F. Blasi and P. Carmeliet, “uPAR: a versatile signalling orchestrator,” Nature Reviews Molecular Cell Biology, vol. 3, no. 12, pp. 932–943, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Blasi and N. Sidenius, “The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling,” FEBS Letters, vol. 584, no. 9, pp. 1923–1930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Dassah, A. B. Deora, K. He, and K. A. Hajjar, “The endothelial cell annexin A2 system and vascular fibrinolysis,” General Physiology and Biophysics, vol. 28, pp. F20–F28, 2009. View at Scopus
  17. E. C. Flood and K. A. Hajjar, “The annexin A2 system and vascular homeostasis,” Vascular Pharmacology, vol. 54, no. 3–6, pp. 59–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. A. Miles, C. M. Dahlberg, J. Plescia, J. Felez, K. Kato, and E. F. Plow, “Role of cell-surface lysines in plasminogen binding to cells: identification of α-enolase as a candidate plasminogen receptor,” Biochemistry, vol. 30, no. 6, pp. 1682–1691, 1991. View at Scopus
  19. S. B. Hawley, T. A. Tamura, and L. A. Miles, “Purification, cloning, and characterization of a profibrinolytic plasminogen-binding protein, TIP49a,” The Journal of Biological Chemistry, vol. 276, no. 1, pp. 179–186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Herren, T. A. Burke, R. Das, and E. F. Plow, “Identification of histone H2B as a regulated plasminogen receptor,” Biochemistry, vol. 45, no. 31, pp. 9463–9474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Pluskota, D. A. Soloviev, K. Bdeir, D. B. Cines, and E. F. Plow, “Integrin αMβ2 Orchestrates and Accelerates Plasminogen Activation and Fibrinolysis by Neutrophils,” The Journal of Biological Chemistry, vol. 279, no. 17, pp. 18063–18072, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Parkkinen and H. Rauvala, “Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin: enhancement of t-PA-catalyzed plasminogen activation by amphoterin,” The Journal of Biological Chemistry, vol. 266, no. 25, pp. 16730–16735, 1991. View at Scopus
  23. N. M. Andronicos, E. I. Chen, N. Baik et al., “Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation,” Blood, vol. 115, no. 7, pp. 1319–1330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Kraemer, P. J. Baker, K. C. Kent et al., “Decreased neurotrophin TrkB receptor expression reduces lesion size in the apolipoprotein E-null mutant mouse,” Circulation, vol. 112, no. 23, pp. 3644–3653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Kwon, T. J. MacLeod, Y. Zhang, and D. M. Waisman, “S100A10, annexin A2, and annexin A2 heterotetramer as candidate plasminogen receptors,” Frontiers in Bioscience, vol. 10, no. 1, pp. 300–325, 2005. View at Scopus
  26. P. A. Madureira, A. P. Surette, K. D. Phipps, M. A. S. Taboski, V. A. Miller, and D. M. Waisman, “The role of the annexin A2 heterotetramer in vascular fibrinolysis,” Blood, vol. 118, no. 18, pp. 4789–4797, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Das, T. Burke, and E. F. Plow, “Histone H2B as a functionally important plasminogen receptor on macrophages,” Blood, vol. 110, no. 10, pp. 3763–3772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Valapala and J. K. Vishwanatha, “Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2,” The Journal of Biological Chemistry, vol. 286, no. 35, pp. 30911–30925, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. V. Faure, C. Migné, G. Devilliers, and J. Ayala-Sanmartin, “Annexin 2 “secretion” accompanying exocytosis of chromaffin cells: possible mechanisms of annexin release,” Experimental Cell Research, vol. 276, no. 1, pp. 79–89, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. E. A. Peterson, M. R. Sutherland, M. E. Nesheim, and E. L. G. Pryzdial, “Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2,” Journal of Cell Science, vol. 116, no. 12, pp. 2399–2408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. B. Deora, G. Kreitzer, A. T. Jacovina, and K. A. Hajjar, “An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface,” The Journal of Biological Chemistry, vol. 279, no. 42, pp. 43411–43418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Huang, A. B. Deora, K.-L. He et al., “Hypoxia-inducible factor-1 drives annexin A2 system-mediated perivascular fibrin clearance in oxygen-induced retinopathy in mice,” Blood, vol. 118, no. 10, pp. 2918–2929, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Erikson and R. L. Erikson, “Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product,” Cell, vol. 21, no. 3, pp. 829–836, 1980. View at Scopus
  34. K. L. He, A. B. Deora, H. Xiong et al., “Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11,” The Journal of Biological Chemistry, vol. 283, no. 28, pp. 19192–19200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Okuse, M. Malik-Hall, M. D. Baker et al., “Annexin II light chain regulates sensory neuron-specific sodium channel expression,” Nature, vol. 417, no. 6889, pp. 653–656, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Girard, N. Tinel, C. Terrenoire, G. Romey, M. Lazdunski, and M. Borsotto, “p11, an annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK-1,” The EMBO Journal, vol. 21, no. 17, pp. 4439–4448, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Donier, F. Rugiero, K. Okuse, and J. N. Wood, “Annexin II light chain p11 promotes functional expression of acid-sensing ion channel ASIC1a,” The Journal of Biological Chemistry, vol. 280, no. 46, pp. 38666–38672, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. F. J. Van de Graaf, J. G. J. Hoenderop, D. Gkika et al., “Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex,” The EMBO Journal, vol. 22, no. 7, pp. 1478–1487, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Svenningsson, K. Chergui, I. Rachleff et al., “Alterations in 5-HT1B receptor function by p11 in depression-like states,” Science, vol. 311, no. 5757, pp. 77–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. L. He, G. Sui, H. Xiong et al., “Feedback regulation of endothelial cell surface plasmin generation by PKC-dependent phosphorylation of annexin A2,” The Journal of Biological Chemistry, vol. 286, no. 17, pp. 15428–15439, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Jost and V. Gerke, “Mapping of a regulatory important site for protein kinase C phosphorylation in the N-terminal domain of annexin II,” Biochimica et Biophysica Acta, vol. 1313, no. 3, pp. 283–289, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. J. H. Rand, “‘Annexinopathies’—a new class of diseases,” The New England Journal of Medicine, vol. 340, no. 13, pp. 1035–1036, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. J. H. Rand, “The annexinopathies: a new category of diseases,” Biochimica et Biophysica Acta, vol. 1498, no. 2-3, pp. 169–173, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. M. J. Hayes and S. E. Moss, “Annexins and disease,” Biochemical and Biophysical Research Communications, vol. 322, no. 4, pp. 1166–1170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. J. Hayes, R. E. Longbottom, M. A. Evans, and S. E. Moss, “Annexinopathies,” Sub-Cellular biochemistry, vol. 45, pp. 1–28, 2007. View at Scopus
  46. L. Fatimathas and S. E. Moss, “Annexins as disease modifiers,” Histology and Histopathology, vol. 25, no. 4, pp. 527–532, 2010. View at Scopus
  47. C. W. Heizmann, G. E. Ackermann, and A. Galichet, “Pathologies involving the S100 proteins and RAGE,” Sub-cellular Biochemistry, vol. 45, pp. 93–138, 2007. View at Scopus
  48. A. P. Surette, P. A. Madureira, K. D. Phipps, V. A. Miller, P. Svenningsson, and D. M. Waisman, “Regulation of fibrinolysis by S100A10 in vivo,” Blood, vol. 118, no. 11, pp. 3172–3181, 2011. View at Scopus
  49. H. Zhai, S. Acharya, I. Gravanis et al., “Annexin A2 promotes tumor progression in glioma cells,” The Journal of Neuroscience, vol. 31, pp. 14346–14360, 2011.
  50. J. Selhub, “Homocysteine metabolism,” Annual Review of Nutrition, vol. 19, pp. 217–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. L. L. Humphrey, R. Fu, K. Rogers, M. Freeman, and M. Helfand, “Homocysteine level and coronary heart disease incidence: a systematic review and meta-analysis,” Mayo Clinic Proceedings, vol. 83, no. 11, pp. 1203–1212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. H. Bønaa, I. Njølstad, P. M. Ueland et al., “Homocysteine lowering and cardiovascular events after acute myocardial infarction,” The New England Journal of Medicine, vol. 354, no. 15, pp. 1578–1588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. K. A. Hajjar, “Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor,” The Journal of Clinical Investigation, vol. 91, no. 6, pp. 2873–2879, 1993. View at Scopus
  54. K. A. Hajjar, L. Mauri, A. T. Jacovina et al., “Tissue plasminogen activator binding to the annexin II tail domain: direct modulation by homocysteine,” The Journal of Biological Chemistry, vol. 273, no. 16, pp. 9987–9993, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Zhu, X. Fan, Z. Yu et al., “Annexin A2 combined with low-dose tPA improves thrombolytic therapy in a rat model of focal embolic stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 6, pp. 1137–1146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Tanaka, H. Ishii, M. Hiraoka et al., “Efficacy of recombinant annexin 2 for fibrinolytic therapy in a rat embolic stroke model: a magnetic resonance imaging study,” Brain Research, vol. 1165, no. 1, pp. 135–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Yepes, M. Sandkvist, E. G. Moore, T. H. Bugge, D. K. Strickland, and D. A. Lawrence, “Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein,” The Journal of Clinical Investigation, vol. 112, no. 10, pp. 1533–1540, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Wang, K. Tsuji, S. R. Lee et al., “Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke,” Stroke, vol. 35, no. 11, pp. 2726–2730, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Kaur, Z. Zhao, G. M. Klein, E. H. Lo, and A. M. Buchan, “The neurotoxicity of tissue plasminogen activator?” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 9, pp. 945–963, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Fan, Z. Yu, J. Liu et al., “Annexin A2: a tissue plasminogen activator amplifier for thrombolytic stroke therapy,” Stroke, vol. 41, no. 10, pp. S54–S58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Ishii, M. Yoshida, M. Hiraoka et al., “Recombinant annexin II modulates impaired fibrinolytic activity in vitro and in rat carotid artery,” Circulation Research, vol. 89, no. 12, pp. 1240–1245, 2001. View at Scopus
  62. Q. Xiao, M. J. S. Danton, D. P. Witte et al., “Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10335–10340, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Kremen, R. Krishnan, I. Emery et al., “Plasminogen mediates the atherogenic effects of macrophage-expressed urokinase and accelerates atherosclerosis in apoE-knockout mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 44, pp. 17109–17114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Carmeliet, L. Moons, R. Lijnen et al., “Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation,” Nature Genetics, vol. 17, no. 4, pp. 439–444, 1997. View at Scopus
  65. B. Scharf, C. C. Clement, X.-X. Wu et al., “Annexin A2 binds to endosomes following organelle destabilization by particulate wear debris,” Nature Communications, vol. 3, article 755, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. L. E. H. Smith, E. Wesolowski, A. McLellan et al., “Oxygen-induced retinopathy in the mouse,” Investigative Ophthalmology and Visual Science, vol. 35, no. 1, pp. 101–111, 1994. View at Scopus
  67. J. S. Rao, “Molecular mechanisms of glioma invasiveness: the role of proteases,” Nature Reviews Cancer, vol. 3, no. 7, pp. 489–501, 2003. View at Scopus
  68. D. Tsatas and A. H. Kaye, “The role of the plasminogen activation cascade in glioma cell invasion: a review,” Journal of Clinical Neuroscience, vol. 10, no. 2, pp. 139–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. M. E. Beckner, X. Chen, J. An, B. W. Day, and I. F. Pollack, “Proteomic characterization of harvested pseudopodia with differential gel electrophoresis and specific antibodies,” Laboratory Investigation, vol. 85, no. 3, pp. 316–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Tatenhorst, U. Rescher, V. Gerke, and W. Paulus, “Knockdown of annexin 2 decreases migration of human glioma cells in vitro,” Neuropathology and Applied Neurobiology, vol. 32, no. 3, pp. 271–277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Sharma, M. R. Blackman, and M. C. Sharma, “Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model,” Experimental and Molecular Pathology, vol. 92, no. 1, pp. 175–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. M. R. Sharma, L. Koltowski, R. T. Ownbey, G. P. Tuszynski, and M. C. Sharma, “Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression,” Experimental and Molecular Pathology, vol. 81, no. 2, pp. 146–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Sharma, R. T. Ownbey, and M. C. Sharma, “Breast cancer cell surface annexin II induces cell migration and neoangiogenesis via tPA dependent plasmin generation,” Experimental and Molecular Pathology, vol. 88, no. 2, pp. 278–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. K. D. Phipps, A. P. Surette, P. A. O'Connell, and D. M. Waisman, “Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites,” Cancer Research, vol. 71, no. 21, pp. 6676–6683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. P. A. O'Connell, A. P. Surette, R. S. Liwski, P. Svenningsson, and D. M. Waisman, “S100A10 regulates plasminogen-dependent macrophage invasion,” Blood, vol. 116, no. 7, pp. 1136–1146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. J. F. A. Swisher, N. Burton, S. M. Bacot, S. N. Vogel, and G. M. Feldman, “Annexin A2 tetramer activates human and murine macrophages through TLR4,” Blood, vol. 115, no. 3, pp. 549–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Cobelli, B. Scharf, G. M. Crisi, J. Hardin, and L. Santambrogio, “Mediators of the inflammatory response to joint replacement devices,” Nature Reviews Rheumatology, vol. 7, no. 10, pp. 600–608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Maitra, C. C. Clement, B. Scharf et al., “Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis,” Molecular Immunology, vol. 47, no. 2-3, pp. 175–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Alexander, J. Warner-Schmidt, T. Eriksson et al., “Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens,” Science Translational Medicine, vol. 2, no. 54, Article ID 54ra76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Zhang, T. P. Su, K. Choi et al., “P11 (S100A10) as a potential biomarker of psychiatric patients at risk of suicide,” Journal of Psychiatric Research, vol. 45, no. 4, pp. 435–441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Chen, R. Twyman, and H. K. Manji, “p11 and gene therapy for severe psychiatric disorders: a practical goal?” Science Translational Medicine, vol. 2, no. 54, Article ID 54ps51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. X. L. Huang, R. Pawliczak, X. L. Yao et al., “Interferon-γ induces p11 gene and protein expression in human epithelial cells through interferon-γ-activated sequences in the p11 promoter,” The Journal of Biological Chemistry, vol. 278, no. 11, pp. 9298–9308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. J. L. Warner-Schmidt, K. E. Vanover, E. Y. Chen, J. J. Marshall, and P. Greengard, “Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 9262–9267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Foulkes, M. A. Nassar, T. Lane et al., “Deletion of annexin 2 light chain p11 in nociceptors causes deficits in somatosensory coding and pain behavior,” The Journal of Neuroscience, vol. 26, no. 41, pp. 10499–10507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Stein, B. McMahon, H. Kwaan, J. K. Altman, O. Frankfurt, and M. S. Tallman, “The coagulopathy of acute promyelocytic leukaemia revisited,” Best Practice and Research, vol. 22, no. 1, pp. 153–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Nasr, M. C. Guillemin, O. Ferhi et al., “Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation,” Nature Medicine, vol. 14, no. 12, pp. 1333–1342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. J. S. Menell, G. M. Cesarman, A. T. Jacovina, M. A. McLaughlin, E. A. Lev, and K. A. Hajjar, “Annexin II and bleeding in acute promyelocytic leukemia,” The New England Journal of Medicine, vol. 340, no. 13, pp. 994–1004, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. P. A. O'Connell, P. A. Madureira, J. N. Berman, R. S. Liwski, and D. M. Waisman, “Regulation of S100A10 by the PML-RAR-α oncoprotein,” Blood, vol. 117, no. 15, pp. 4095–4105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Liu, Z. Wang, M. Jiang et al., “The expression of annexin II and its role in the fibrinolytic activity in acute promyelocytic leukemia,” Leukemia Research, vol. 35, no. 7, pp. 879–884, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Ohno, M. Izumi, T. Kawamura, T. Nishimura, K. Mukai, and M. Tachibana, “Annexin II represents metastatic potential in clear-cell renal cell carcinoma,” British Journal of Cancer, vol. 101, no. 2, pp. 287–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. U. Zimmermann, C. Woenckhaus, S. Pietschmann et al., “Expression of annexin II in conventional renal cell carcinoma is correlated with Fuhrman grade and clinical outcome,” Virchows Archiv, vol. 445, no. 4, pp. 368–373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Domoto, Y. Miyama, H. Suzuki et al., “Evaluation of S100A10, annexin II and B-FABP expression as markers for renal cell carcinoma,” Cancer Science, vol. 98, no. 1, pp. 77–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Emoto, H. Sawada, Y. Yamada et al., “Annexin II overexpression is correlated with poor prognosis in human gastric carcinoma,” Anticancer Research, vol. 21, no. 2, pp. 1339–1346, 2001. View at Scopus
  94. A. G. Banerjee, J. Liu, Y. Yuan et al., “Expression of biomarkers modulating prostate cancer angiogenesis: differential expression of annexin II in prostate carcinomas from India and USA,” Molecular Cancer, vol. 2, article 34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. I. Esposito, R. Penzel, M. Chaib-Harrireche et al., “Tenascin C and annexin II expression in the process of pancreatic carcinogenesis,” Journal of Pathology, vol. 208, no. 5, pp. 673–685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. M. B. Mintz, R. Sowers, K. M. Brown et al., “An expression signature classifies chemotherapy-resistant pediatric osteosarcoma,” Cancer Research, vol. 65, no. 5, pp. 1748–1754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. S. A. Reeves, C. Chavez-Kappel, R. Davis, M. Rosenblum, and M. A. Israel, “Developmental regulation of annexin II (Lipocortin 2) in human brain and expression in high grade glioma,” Cancer Research, vol. 52, no. 24, pp. 6871–6876, 1992. View at Scopus
  98. S. J. T. Nygaard, H. K. Haugland, E. K. Kristoffersen, M. Lund-Johansen, O. D. Laerum, and O. B. Tysnes, “Expression of annexin II in glioma cell lines and in brain tumor biopsies,” Journal of Neuro-Oncology, vol. 38, no. 1, pp. 11–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  99. B. J. Roseman, A. Bollen, J. Hsu, K. Lamborn, and M. A. Israel, “Annexin II marks astrocytic brain tumors of high histologic grade,” Oncology Research, vol. 6, no. 12, pp. 561–567, 1994. View at Scopus
  100. H. Pei, H. Zhu, S. Zeng et al., “Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer,” Journal of Proteome Research, vol. 6, no. 7, pp. 2495–2501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Bao, M. Jiang, M. Zhu, F. Sheng, J. Ruan, and C. Ruan, “Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma,” International Journal of Hematology, vol. 90, no. 2, pp. 177–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. S. D'Souza, N. Kurihara, Y. Shiozawa et al., “Annexin II interactions with the annexin II receptor enhance multiple myeloma cell adhesion and growth in the bone marrow microenvironment,” Blood, vol. 119, no. 8, pp. 1888–1896, 2012. View at Scopus
  103. J. P. Rodrigo, P. Lequerica-Fernández, P. Rosado, E. Allonca, J. M. García-Pedrero, and J. C. De Vicente, “Clinical significance of annexin A2 downregulation in oral squamous cell carcinoma,” Head and Neck, vol. 33, no. 12, pp. 1708–1714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. J. P. Rodrigo, J. M. García-Pedrero, J. L. Llorente et al., “Down-regulation of annexin A1 and A2 protein expression in intestinal-type sinonasal adenocarcinomas,” Human Pathology, vol. 42, no. 1, pp. 88–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Ito, K. Arai, R. Nozawa et al., “S100A10 expression in thyroid neoplasms originating from the follicular epithelium: contribution to the aggressive characteristic of anaplastic carcinoma,” Anticancer Research, vol. 27, no. 4, pp. 2679–2683, 2007. View at Scopus
  106. E. McKiernan, E. W. McDermott, D. Evoy, J. Crown, and M. J. Duffy, “The role of S100 genes in breast cancer progression,” Tumour Biology, vol. 32, no. 3, pp. 441–450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Ji, L. Zhao, X. Wang et al., “Differential expression of S100 gene family in human esophageal squamous cell carcinoma,” Journal of Cancer Research and Clinical Oncology, vol. 130, no. 8, pp. 480–486, 2004. View at Scopus
  108. T. Teratani, T. Watanabe, F. Kuwahara et al., “Induced transcriptional expression of calcium-binding protein S100A1 and S100A10 genes in human renal cell carcinoma,” Cancer Letters, vol. 175, no. 1, pp. 71–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. W. El-Rifai, C. A. Moskaluk, M. K. Abdrabbo et al., “Gastric cancers overexpress S100A calcium-binding proteins,” Cancer Research, vol. 62, no. 23, pp. 6823–6826, 2002. View at Scopus
  110. E. Cockrell, R. G. Espinola, and K. R. McCrae, “Annexin A2: biology and relevance to the antiphospholipid syndrome,” Lupus, vol. 17, no. 10, pp. 943–951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Cohen, S. P. Berger, G. M. Steup-Beekman, K. W. M. Bloemenkamp, and I. M. Bajema, “Diagnosis and management of the antiphospholipid syndrome,” BMJ, vol. 340, no. 7756, pp. 1125–1132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Cesarman-Maus, N. P. Ríos-Luna, A. B. Deora et al., “Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome,” Blood, vol. 107, no. 11, pp. 4375–4382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. W. Ao, H. Zheng, X. W. Chen, Y. Shen, and C. D. Yang, “Anti-annexin II antibody is associated with thrombosis and/or pregnancy morbidity in antiphospholipid syndrome and systemic lupus erythematosus with thrombosis,” Rheumatology International, vol. 31, no. 7, pp. 865–869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Zhang and K. R. McCrae, “Annexin A2 mediates endothelial cell activation by antiphospholipid/anti- β2 glycoprotein I antibodies,” Blood, vol. 105, no. 5, pp. 1964–1969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. K. L. Allen, F. V. Fonseca, V. Betapudi, B. Willard, J. Zhang, and K. R. McCrae, “A novel pathway for human endothelial cell activation by antiphospholipid/anti-β2 glycoprotein I antibodies,” Blood, vol. 119, no. 3, pp. 884–893, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. K. A. Krone, K. L. Allen, and K. R. McCrae, “Impaired fibrinolysis in the antiphospholipid syndrome,” Current Rheumatology Reports, vol. 12, no. 1, pp. 53–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. B. F. Jackson, F. K. Porcher, D. T. Zapton, and J. D. Losek, “Cerebral sinovenous thrombosis in children: diagnosis and treatment,” Pediatric Emergency Care, vol. 27, no. 9, pp. 874–880, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. G. Cesarman-Maus, C. Cantú-Brito, F. Barinagarrementeria et al., “Autoantibodies against the fibrinolytic receptor, annexin A2, in cerebral venous thrombosis,” Stroke, vol. 42, no. 2, pp. 501–503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. D. Kaczan-Bourgois, J. P. Salles, F. Hullin et al., “Increased content of Annexin II (p36) and p11 in human placenta brush-border membrane vesicles during syncytiotrophoblast maturation and differentiation,” Placenta, vol. 17, no. 8, pp. 669–676, 1996. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Xin, Y. Zhang, H. Wang, and S. Sun, “Alterations of profibrinolytic receptor annexin A2 in pre-eclampsia: a possible role in placental thrombin formation,” Thrombosis Research, vol. 129, no. 5, pp. 563–567, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Heeney and G. J. Dover, “Sickle cell disease,” in Hematology of Infancy and Childhood, S. H. Orkin, D. G. Nathan, D. Ginsburg, A. T. Look, D. E. Fisher, and S. E. Lux, Eds., pp. 949–941, Saunders Elsevier, Philadelphia, Pa, USA, 2009.
  122. P. Sebastiani, M. F. Ramoni, V. Nolan, C. T. Baldwin, and M. H. Steinberg, “Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia,” Nature Genetics, vol. 37, no. 4, pp. 435–440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. J. M. Flanagan, D. M. Frohlich, T. A. Howard et al., “Genetic predictors for stroke in children with sickle cell anemia,” Blood, vol. 117, no. 24, pp. 6681–6684, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Baldwin, V. G. Nolan, D. F. Wyszynski et al., “Association of klotho, bone morphogenic protein 6, and annexin A2 polymorphisms with sickle cell osteonecrosis,” Blood, vol. 106, no. 1, pp. 372–375, 2005. View at Publisher · View at Google Scholar · View at Scopus