About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 428503, 10 pages
http://dx.doi.org/10.1155/2012/428503
Research Article

Thin-Layer Hydroxyapatite Deposition on a Nanofiber Surface Stimulates Mesenchymal Stem Cell Proliferation and Their Differentiation into Osteoblasts

1Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Videnska 1083,142 40 Prague, Czech Republic
2Department of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, 150 06 Prague 5, Czech Republic
3Department of Natural Sciences, Czech Technical University in Prague, Zikova 1905/4, 166 36 Prague 6, Czech Republic
4Department of Mechanics, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 30614 Pilsen, Czech Republic
5Department of Nonwoven Textiles, Faculty of Textile Engineering, Technical University of Liberec, Liberec 461 17, Czech Republic
6Institute of Pathology, First Faculty of Medicine, General Teaching Hospital, Charles University, Studnickova 2, 128 00 Prague, Czech Republic
7Department of Medicine and Humanities, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic

Received 15 June 2011; Accepted 19 October 2011

Academic Editor: Ji Wu

Copyright © 2012 Eva Prosecká et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Pulsed laser deposition was proved as a suitable method for hydroxyapatite (HA) coating of coaxial poly-ɛ-caprolactone/polyvinylalcohol (PCL/PVA) nanofibers. The fibrous morphology of PCL/PVA nanofibers was preserved, if the nanofiber scaffold was coated with thin layers of HA (200 nm and 400 nm). Increasing thickness of HA, however, resulted in a gradual loss of fibrous character. In addition, biomechanical properties were improved after HA deposition on PCL/PVA nanofibers as the value of Young's moduli of elasticity significantly increased. Clearly, thin-layer hydroxyapatite deposition on a nanofiber surface stimulated mesenchymal stem cell viability and their differentiation into osteoblasts. The optimal depth of HA was 800 nm.