About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 437920, 7 pages
http://dx.doi.org/10.1155/2012/437920
Review Article

The Plasminogen System in Regulating Stem Cell Mobilization

Joseph J. Jacobs Center for Thrombosis and Vascular Biology and Departments of Cardiovascular Medicine and Molecular Cardiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA

Received 11 April 2012; Accepted 5 June 2012

Academic Editor: David M. Waisman

Copyright © 2012 Yanqing Gong and Jane Hoover-Plow. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Cottler-Fox, T. Lapidot, I. Petit et al., “Stem cell mobilization,” Hematology: American Society of Hematology, Education Program, pp. 419–437, 2003. View at Scopus
  2. M. Al-Jurf, F. Aranha, C. Annasetti et al., “Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials,” Journal of Clinical Oncology, vol. 23, no. 22, pp. 5074–5087, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Hoover-Plow and Y. Gong, “Challenges for heart disease stem cell therapy,” Journal of Vascular Health and Risk Management, vol. 8, pp. 99–113, 2012.
  4. P. Stiff, R. Gingrich, S. Luger et al., “A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin's disease or non-Hodgkin's lymphoma,” Bone Marrow Transplantation, vol. 26, no. 5, pp. 471–481, 2000. View at Scopus
  5. M. Holm, “Not all healthy donors mobilize hematopoietic progenitor cells sufficiently after G-CSF administration to allow for subsequent CD34 purification of the leukapheresis product,” Journal of Hematotherapy, vol. 7, no. 2, pp. 111–113, 1998. View at Scopus
  6. P. Anderlini, D. Przepiorka, C. Seong et al., “Factors affecting mobilization of CD34+ cells in normal donors treated with filgrastim,” Transfusion, vol. 37, no. 5, pp. 507–512, 1997. View at Scopus
  7. F. J. Castellino and V. A. Ploplis, “Structure and function of the plasminogen/plasmin system,” Thrombosis and Haemostasis, vol. 93, no. 4, pp. 647–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Heissig, M. Ohki-Koizumi, Y. Tashiro, I. Gritli, K. Sato-Kusubata, and K. Hattori, “New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis,” International Journal of Hematology, vol. 95, no. 2, pp. 131–137, 2012.
  9. D. Collen, “Ham-Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling,” Hematology: American Society of Hematology, Education Program, pp. 1–9, 2001. View at Scopus
  10. N. M. Andronicos, E. I. Chen, N. Baik et al., “Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation,” Blood, vol. 115, no. 7, pp. 1319–1330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Hoover-Plow and L. Yuen, “Plasminogen binding is increased with adipocyte differentiation,” Biochemical and Biophysical Research Communications, vol. 284, no. 2, pp. 389–394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Nervi, D. C. Link, and J. F. DiPersio, “Cytokines and hematopoietic stem cell mobilization,” Journal of Cellular Biochemistry, vol. 99, no. 3, pp. 690–705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. R. Lijnen, “Plasmin and matrix metalloproteinases in vascular remodeling,” Thrombosis and Haemostasis, vol. 86, no. 1, pp. 324–333, 2001. View at Scopus
  14. E. F. Plow, T. Herren, A. Redlitz, L. A. Miles, and J. L. Hoover-Plow, “The cell biology of the plasminogen system,” FASEB Journal, vol. 9, no. 10, pp. 939–945, 1995. View at Scopus
  15. E. M. Salonen, A. Zitting, and A. Vaheri, “Laminin interacts with plasminogen and its tissue-type activator,” FEBS Letters, vol. 172, no. 1, pp. 29–32, 1984. View at Publisher · View at Google Scholar · View at Scopus
  16. E. M. Salonen, O. Saksela, and T. Vartio, “Plasminogen and tissue-type plasminogen activator bind to immobilized fibronectin,” The Journal of Biological Chemistry, vol. 260, no. 22, pp. 12302–12307, 1985. View at Scopus
  17. R. L. Silverstein, L. L. K. Leung, P. C. Harpel, and R. L. Nachman, “Complex formation of platelet thrombospondin with plasminogen. Modulation of activation by tissue activator,” Journal of Clinical Investigation, vol. 74, no. 5, pp. 1625–1633, 1984. View at Scopus
  18. Y. Okada, Y. Gonoji, K. Naka et al., “Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties,” The Journal of Biological Chemistry, vol. 267, no. 30, pp. 21712–21719, 1992. View at Scopus
  19. C. He, S. M. Wilhelm, A. P. Pentland et al., “Tissue cooperation in a proteolytic cascade activating human interstitial collagenase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 8, pp. 2632–2636, 1989. View at Scopus
  20. Y. Gong, E. Hart, A. Shchurin, and J. Hoover-Plow, “Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 3012–3024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Heissig, L. R. Lund, H. Akiyama et al., “The plasminogen fibrinolytic pathway is required for hematopoietic regeneration,” Cell Stem Cell, vol. 1, no. 6, pp. 658–670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Tjwa, R. Moura, L. Moons et al., “Fibrinolysis-independent role of plasmin and its activators in the haematopoietic recovery after myeloablation,” Journal of Cellular and Molecular Medicine, vol. 13, no. 11-12, pp. 4587–4595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Tjwa, S. Janssens, and P. Carmeliet, “Plasmin therapy enhances mobilization of HPCs after G-CSF,” Blood, vol. 112, no. 10, pp. 4048–4050, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Tjwa, N. Sidenius, R. Moura et al., “Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells,” Journal of Clinical Investigation, vol. 119, no. 4, pp. 1008–1018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Gong, Y. Fan, and J. Hoover-Plow, “Plasminogen regulates stromal cell-derived factor-1/CXCR4-Mediated hematopoietic stem cell mobilization by activation of matrix metalloproteinase-9,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 9, pp. 2035–2043, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. M. Pelus, H. Bian, A. G. King, and S. Fukuda, “Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2δ4,” Blood, vol. 103, no. 1, pp. 110–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Petit, M. Szyper-Kravitz, A. Nagler et al., “G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4,” Nature Immunology, vol. 3, no. 7, pp. 687–694, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Christopher, F. Liu, M. J. Hilton, F. Long, and D. C. Link, “Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization,” Blood, vol. 114, no. 7, pp. 1331–1339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Ellis, N. Behrendt, and K. Dano, “Plasminogen activation by receptor-bound urokinase: a kinetic study with both cell-associated and isolated receptor,” The Journal of Biological Chemistry, vol. 266, no. 19, pp. 12752–12758, 1991. View at Scopus
  30. N. Behrendt, E. Ronne, and K. Dano, “The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface,” Biological Chemistry Hoppe-Seyler, vol. 376, no. 5, pp. 269–279, 1995. View at Scopus
  31. H. W. Smith and C. J. Marshall, “Regulation of cell signalling by uPAR,” Nature Reviews Molecular Cell Biology, vol. 11, no. 1, pp. 23–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. A. Chapman and Y. Wei, “Protease crosstalk with integrins: the urokinase receptor paradigm,” Thrombosis and Haemostasis, vol. 86, no. 1, pp. 124–129, 2001. View at Scopus
  33. F. Blasi and P. Carmeliet, “uPAR: a versatile signalling orchestrator,” Nature Reviews Molecular Cell Biology, vol. 3, no. 12, pp. 932–943, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Blasi, “uPA, uPAR, PAI-I: key intersection of proteolytic, adhesive and chemotactic highways?” Immunology Today, vol. 18, no. 9, pp. 415–417, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. S. M. Carlin, T. J. Resink, M. Tamm, and M. Roth, “Urokinase signal transduction and its role in cell migration,” FASEB Journal, vol. 19, no. 2, pp. 195–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Selleri, N. Montuori, P. Ricci et al., “Involvement of the urokinase-type plasminogen activator receptor in hematopoietic stem cell mobilization,” Blood, vol. 105, no. 5, pp. 2198–2205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Selleri, N. Montuori, P. Ricci et al., “In vivo activity of the cleaved form of soluble urokinase receptor: a new hematopoietic stem/progenitor cell mobilizer,” Cancer Research, vol. 66, no. 22, pp. 10885–10890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Blasi, “The urokinase receptor in hematopoietic stem cells mobilization,” Current Pharmaceutical Design, vol. 17, no. 19, pp. 1911–1913, 2011.
  39. K. C. Vallabhaneni, S. Tkachuk, Y. Kiyan et al., “Urokinase receptor mediates mobilization, migration, and differentiation of mesenchymal stem cells,” Cardiovascular Research, vol. 90, no. 1, pp. 113–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Andolfo, W. R. English, M. Resnati, G. Murphy, F. Blasi, and N. Sidenius, “Metalloproteases cleave the urokinase-type plasminogen activator receptor in the D1-D2 linker region and expose epitopes not present in the intact soluble receptor,” Thrombosis and Haemostasis, vol. 88, no. 2, pp. 298–306, 2002. View at Scopus
  41. N. Beaufort, D. Leduc, J. C. Rousselle, A. Namane, M. Chignard, and D. Pidard, “Plasmin cleaves the juxtamembrane domain and releases truncated species of the urokinase receptor (CD87) from human bronchial epithelial cells,” FEBS Letters, vol. 574, no. 1–3, pp. 89–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Furlan, S. Orlando, C. Laudanna et al., “The soluble D2D388-274 fragment of the urokinase receptor inhibits monocyte chemotaxis and integrin-dependent cell adhesion,” Journal of Cell Science, vol. 117, no. 14, pp. 2909–2916, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Tarui, A. P. Mazar, D. B. Cines, and Y. Takada, “Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction,” The Journal of Biological Chemistry, vol. 276, no. 6, pp. 3983–3990, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Fietz, K. Hattori, E. Thiel, and B. Heissig, “Increased soluble urokinase plasminogen activator receptor (suPAR) serum levels after granulocyte colony-stimulating factor treatment do not predict successful progenitor cell mobilization in vivo,” Blood, vol. 107, no. 8, pp. 3408–3409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. C. D. Madsen, G. M. S. Ferraris, A. Andolfo, O. Cunningham, and N. Sidenius, “uPAR-induced cell adhesion and migration: vitronectin provides the key,” Journal of Cell Biology, vol. 177, no. 5, pp. 927–939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. H. W. Smith, P. Marra, and C. J. Marshall, “uPAR promotes formation of the p130Cas-Crk complex to activate Rac through DOCK180,” Journal of Cell Biology, vol. 182, no. 4, pp. 777–790, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Wei, M. Lukashev, D. I. Simon et al., “Regulation of integrin function by the urokinase receptor,” Science, vol. 273, no. 5281, pp. 1551–1555, 1996. View at Scopus
  48. P. Chaurasia, J. A. Aguirre-Ghiso, O. D. Liang, H. Gardsvoll, M. Ploug, and L. Ossowski, “A region in urokinase plasminogen receptor domain III controlling a functional association with α5β1 integrin and tumor growth,” The Journal of Biological Chemistry, vol. 281, no. 21, pp. 14852–14863, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Zhang, C. C. Tom, M. C. Kugler et al., “Distinct ligand binding sites in integrin α3β1 regulate matrix adhesion and cell-cell contact,” Journal of Cell Biology, vol. 163, no. 1, pp. 177–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Wei, D. A. Waltz, N. Rao, R. J. Drummond, S. Rosenberg, and H. A. Chapman, “Identification of the urokinase receptor as an adhesion receptor for vitronectin,” The Journal of Biological Chemistry, vol. 269, no. 51, pp. 32380–32388, 1994. View at Scopus
  51. A. E. May, S. M. Kanse, L. R. Lund, R. H. Gisler, B. A. Imhof, and K. T. Preissner, “Urokinase receptor (CD87) regulates leukocyte recruitment via β2 integrins in vivo,” Journal of Experimental Medicine, vol. 188, no. 6, pp. 1029–1037, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. A. E. May, F. J. Neumann, A. Schömig, and K. T. Preissner, “VLA-4 (α4β1) engagement defines a novel activation pathway for β2 integrin-dependent leukocyte adhesion involving the urokinase receptor,” Blood, vol. 96, no. 2, pp. 506–513, 2000. View at Scopus
  53. L. M. Scott, G. V. Priestley, and T. Papayannopoulou, “Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing,” Molecular and Cellular Biology, vol. 23, no. 24, pp. 9349–9360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. R. W. Hurley, J. B. McCarthy, and C. M. Verfaillie, “Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation,” Journal of Clinical Investigation, vol. 96, no. 1, pp. 511–519, 1995. View at Scopus
  55. F. Prosper, D. Stroncek, J. B. McCarthy, and C. M. Verfaillie, “Mobolization and homing of peripheral blood progenitors is related to reversible downregulation of α4β1 integrin expression and function,” Journal of Clinical Investigation, vol. 101, no. 11, pp. 2456–2467, 1998. View at Scopus
  56. N. Montuori, M. V. Carriero, S. Salzano, G. Rossi, and P. Ragno, “The cleavage of the urokinase receptor regulates its multiple functions,” The Journal of Biological Chemistry, vol. 277, no. 49, pp. 46932–46939, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Resnati, I. Pallavicini, J. M. Wang et al., “The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1359–1364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. M. R. Gyetko, R. F. Todd III, C. C. Wilkinson, and R. G. Sitrin, “The urokinase receptor is required for human monocyte chemotaxis in vitro,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1380–1387, 1994. View at Scopus
  59. Y. Le, P. M. Murphy, and J. M. Wang, “Formyl-peptide receptors revisited,” Trends in Immunology, vol. 23, no. 11, pp. 541–548, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Le, W. Shen, B. Li, W. Gong, N. M. Dunlop, and J. M. Wang, “A new insight into the role of “old” chemotactic peptide receptors FPR and FPRL1: down-regulation of chemokine receptors CCR5 and CXCR4,” Forum, vol. 9, no. 4, pp. 299–314, 1999. View at Scopus
  61. B. Q. Li, M. A. Wetzel, J. A. Mikovits et al., “The synthetic peptide WKYMVm attenuates the function of the chemokine receptors CCR5 and CXCR4 through activation of formyl peptide receptor-like 1,” Blood, vol. 97, no. 10, pp. 2941–2947, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. J. P. Lévesque, J. Hendy, Y. Takamatsu, P. J. Simmons, and L. J. Bendall, “Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by gcsf or cyclophosphamide,” Journal of Clinical Investigation, vol. 111, no. 2, pp. 187–196, 2003. View at Publisher · View at Google Scholar · View at Scopus