About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 450967, 8 pages
http://dx.doi.org/10.1155/2012/450967
Research Article

Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

1Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99352, USA
2Biodefense, Pacific Northwest National Laboratory, Richland, WA 99352, USA
3Nuclear Material Analysis, Pacific Northwest National Laboratory, Richland, WA 99352, USA
4Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT 84112, USA
5Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843, USA
6Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, WA 98382, USA

Received 29 February 2012; Accepted 13 May 2012

Academic Editor: Carlos Ramos

Copyright © 2012 Bobbie-Jo Webb-Robertson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. A. Weiss, Castor. Oilseed Crops, Longman, London, UK, 1983.
  2. S. M. Bradberry, K. J. Dickers, P. Rice, G. D. Griffiths, and J. A. Vale, “Ricin poisoning,” Toxicological Reviews, vol. 22, no. 1, pp. 65–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. R. Challoner and M. M. McCarron, “Castor bean intoxication,” Annals of Emergency Medicine, vol. 19, no. 10, pp. 1177–1183, 1990. View at Scopus
  4. J. M. Bale, et al., Ricin Found in London: An al-Qa'ida Connection?James Martin Center for Nonproliferation Studies, Monterey, Calif, USA, 2002.
  5. H. A. Colburn, D. S. Wunschel, H. W. Kreuzer, J. J. Moran, K. C. Antolick, and A. M. Melville, “Analysis of carbohydrate and fatty acid marker abundance in ricin toxin preparations for forensic information,” Analytical Chemistry, vol. 82, no. 14, pp. 6040–6047, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. W. Kreuzer, J. H. Wahl, C. N. Metoyer, H. A. Colburn, and K. L. Wahl, “Detection of acetone processing of castor bean mash for forensic investigation of ricin preparation methods,” Journal of Forensic Sciences, vol. 55, no. 4, pp. 908–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. E. Cerling, G. Wittemyer, H. B. Rasmussen et al., “Stable isotopes in elephant hair document migration patterns and diet changes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 2, pp. 371–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. R. Ehleringer, J. F. Casale, M. J. Lott, and V. L. Ford, “Tracing the geographical origin of cocaine: Cocaine carries a chemical fingerprint from the region where the coca was grown,” Nature, vol. 408, no. 6810, pp. 311–312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Ehleringer, D. A. Cooper, M. J. Lott, and C. S. Cook, “Geo-location of heroin and cocaine by stable isotope ratios,” Forensic Science International, vol. 106, no. 1, pp. 27–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Swoboda, M. Brunner, S. F. Boulyga, P. Galler, M. Horacek, and T. Prohaska, “Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS,” Analytical and Bioanalytical Chemistry, vol. 390, no. 2, pp. 487–494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. B. West, J. R. Ehleringer, and T. E. Cerling, “Geography and vintage predicted by a novel GIS model of wine δ18O,” Journal of Agricultural and Food Chemistry, vol. 55, no. 17, pp. 7075–7083, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. B. West, H. W. Kreuzer, J. R. Ehleringer, et al., “Approaches to plant hydrogen and oxygen isoscapes generation,” in Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping, J. B. West, Ed., pp. 161–178, Springer, Monterey, Calif, USA, 2010.
  13. B. L. Beard and C. M. Johnson, “Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals,” Journal of Forensic Sciences, vol. 45, no. 5, pp. 1049–1061, 2000. View at Scopus
  14. H. W. Kreuzer, J. B. West, and J. R. Ehleringer, “Forensic applications of light-element stable isotope ratios of Ricinus communis seeds and ricin preparations,” Journal of Forensic Sciences. In press.
  15. J. R. Ehleringer, et al., “Stable isotope ratio analyses of castor bean: a ricin signature program,” in Federal Bureau of Investigation, 2006.
  16. T. B. Coplen, “New guidelines for reporting stable hydrogen, carbon and oxygen isotope-ratio data,” Geochimica et Cosmochimica Acta, vol. 60, no. 17, pp. 3359–3360, 1996. View at Publisher · View at Google Scholar
  17. J. M. Bernardo and A. F. M. Smith, Bayesian Theory, John Wiley & Sons, New York, 2000.
  18. B. J. Webb-Robertson, L. A. McCue, N. Beagley et al., “A Bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections,” Pacific Symposium on Biocomputing, pp. 451–463, 2009. View at Scopus
  19. C. M. Jarque and A. K. Bera, “A test for normality of observations and regression residuals,” International Statistical Review, vol. 55, no. 2, pp. 163–172, 1987. View at Publisher · View at Google Scholar
  20. K. R. Beebe, R. J. Pell, and M. B. Seasholtz, Chemometrics: A Practical Guide, John Wiley & Sons, Hoboken, NJ, USA, 1998.
  21. P. McCullagh and J. A. Nelder, Generalized Linear Models, Chapman & Hall, New York, NY, USA, 1990.
  22. W. Jiang and R. Simon, “A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification,” Statistics in Medicine, vol. 26, no. 29, pp. 5320–5334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. D. Farquhar, J. R. Ehleringer, and K. T. Hubick, “Carbon isotope discrimination and photosynthesis,” Annual Review of Plant Physiology and Molecular Biology, vol. 40, pp. 503–537, 1989.
  24. G. D. Farquhar and R. A. Richards, “Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes,” Australian Journal of Plant Physiology, vol. 11, no. 6, pp. 539–552, 1984. View at Scopus
  25. G. D. Farquhar, M. H. O'Leary, and J. A. Berry, “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves,” Australian Journal of Plant Physiology, vol. 9, no. 2, pp. 121–137, 1982. View at Scopus
  26. L. Sternberg, M. DeNiro, and R. Savidge, “Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis,” Plant Physiology, vol. 82, pp. 423–427, 1986.
  27. J. Gray and P. Thompson, “Climatic information from 18O/16O ratios of cellulose in tree rings,” Nature, vol. 262, no. 5568, pp. 481–482, 1976. View at Scopus
  28. S. Epstein, P. Thompson, and C. J. Yapp, “Oxygen and hydrogen isotopic ratios in plant cellulose,” Science, vol. 198, no. 4323, pp. 1209–1215, 1977. View at Scopus
  29. L. H. Pardo and K. J. Nadelhoffer, et al., “Using nitrogen isotope ratios to assess terrestrial ecosystems at regional and global scales,” in Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping, J. B. West, et al., Ed., pp. 221–250, Springer, Dordrecht, The Netherlands, 2010.
  30. R. L. Ott and M. Longnecker, An Introduction to Statistical Methods and Data Analysis, Brooks/Cole, Belmont, 6th edition, 2010.
  31. N. Beagley, K. G. Stratton, and B. J. Webb-Robertson, “VIBE 2.0: visual integration for bayesian evaluation,” Bioinformatics (Oxford, England), vol. 26, no. 2, pp. 280–282, 2010. View at Scopus
  32. H. Craig, “Isotopic variations in meteoric waters,” Science, vol. 133, no. 3465, pp. 1702–1703, 1961. View at Scopus
  33. C. Kendall and T. B. Coplen, “Distribution of oxygen-18 and deuteriun in river waters across the United States,” Hydrological Processes, vol. 15, no. 7, pp. 1363–1393, 2001. View at Publisher · View at Google Scholar · View at Scopus