About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 457065, 7 pages
http://dx.doi.org/10.1155/2012/457065
Methodology Report

An Experimental Model for Resistance Exercise in Rodents

1Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, Cidade Universitária, 05508-030 São Paulo, SP, Brazil
2Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-030 São Paulo, SP, Brazil

Received 6 August 2011; Revised 21 October 2011; Accepted 28 November 2011

Academic Editor: Leon Spicer

Copyright © 2012 Humberto Nicastro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Hawley, “Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance,” Diabetes/Metabolism Research and Reviews, vol. 20, no. 5, pp. 383–393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. V. D. S. Painelli, B. Gualano, G. G. Artioli et al., “The possible role of physical exercise on the treatment of idiopathic inflammatory myopathies,” Autoimmunity Reviews, vol. 8, no. 5, pp. 355–359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Guilhem, C. Cornu, and A. Guével, “Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise,” Annals of Physical and Rehabilitation Medicine, vol. 53, no. 5, pp. 319–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. O. Pereira and A. H. Lancha Jr., “Effect of insulin and contraction up on glucose transport in skeletal muscle,” Progress in Biophysics and Molecular Biology, vol. 84, no. 1, pp. 1–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Izquierdo, K. Häkkinen, J. Ibáñez, W. J. Kraemer, and E. M. Gorostiaga, “Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men,” European Journal of Applied Physiology, vol. 94, no. 1-2, pp. 70–75, 2005. View at Publisher · View at Google Scholar
  6. J. J. Hulmi, S. Walker, J. P. Ahtiainen, K. Ny man, W. J. Kraemer, and K. Hakkinen, “Molecular signaling in muscle is affected by the specificit y of resistance exercise protocol,” Scandinavian Journal of Medicine & Science in Sports. In press. View at Publisher · View at Google Scholar
  7. M. L. Leal, L. Lamas, M. S. Aoki et al., “Effect of different resistance-training regimens on the WNT-signaling pathway,” European Journal of Applied Physiology, vol. 111, no. 10, pp. 2535–2545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Lamas, M. S. Aoki, C. Ugrinowitsch et al., “Expression of genes related to muscle plasticity after strength and power training regimens,” Scandinavian Journal of Medicine and Science in Sports, vol. 20, no. 2, pp. 216–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Roschel, C. Ugrinowistch, R. Barroso et al., “Effect of eccentric exercise velocity on akt/mtor/p70s6k signaling in human skeletal muscle,” Applied Physiology, Nutrition and Metabolism, vol. 36, no. 2, pp. 283–290, 2011. View at Publisher · View at Google Scholar
  10. M. Neves Jr., G. Barreto, L. Boobis et al., “Incidence of adverse events associated with percutaneous muscular biopsy among healthy and diseased subjects,” Scandinavian Journal of Medicine and Science in Sports. In press. View at Publisher · View at Google Scholar
  11. M. A. Tarnopolsky, E. Pearce, K. Smith, and B. Lach, “Suction-modified Bergström muscle biopsy technique: experience with 13,500 procedures,” Muscle and Nerve, vol. 43, no. 5, pp. 717–725, 2011. View at Publisher · View at Google Scholar
  12. H. Klitgaard, “A model for quantitative strength training of hindlimb muscles of the rat,” Journal of Applied Physiology, vol. 64, no. 4, pp. 1740–1745, 1988. View at Scopus
  13. G. R. Adams, F. Haddad, P. W. Bodell, P. D. Tran, and K. M. Baldwin, “Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats,” Journal of Applied Physiology, vol. 103, no. 5, pp. 1644–1654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Haddad, G. R. Adams, P. W. Bodell, and K. M. Baldwin, “Isometric resistance exercise fails to counteract skeletal muscle atrophy processes during the initial stages of unloading,” Journal of Applied Physiology, vol. 100, no. 2, pp. 433–441, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Wirth, E. W. Gregory, R. G. Cutlip, and G. R. Miller, “Control and quantitation of voluntary weight-lifting performance of rats,” Journal of Applied Physiology, vol. 95, no. 1, pp. 402–412, 2003. View at Scopus
  16. J. D. Fluckey, E. E. Dupont-Versteegden, D. C. Montague et al., “A rat resistance exercise regimen attenuates losses of musculoskeletal mass during hindlimb suspension,” Acta Physiologica Scandinavica, vol. 176, no. 4, pp. 293–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. N. E. Zanchi, M. A. D. S. Filho, F. S. Lira et al., “Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3β and p70S6K levels in rats,” European Journal of Applied Physiology, vol. 106, no. 3, pp. 415–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Nicastro, N. E. Zanchi, C. R. da Luz et al., “Effects of leucine supplementation and resistance exercise on dexamethasone-induced muscle atrophy and insulin resistance in rats,” Nutrition. In press. View at Publisher · View at Google Scholar