About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 460841, 7 pages
http://dx.doi.org/10.1155/2012/460841
Methodology Report

Development of Animal Model for Studying Deep Second-Degree Thermal Burns

1Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
2Programa de Pós-Graduação em Biociência Animal, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
3Departamento de Patologia, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
4Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil

Received 9 January 2012; Revised 9 March 2012; Accepted 13 March 2012

Academic Editor: Monica Fedele

Copyright © 2012 Danielle dos Santos Tavares Pereira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Thermal lesions were produced in 12 male Wistar rats, positioning a massive aluminum bar 10 mm in diameter (51 g), preheated to 99°C ± 2°C/10 min. on the back of each animal for 15 sec. After 7, 14, 21, and 28 days, animals were euthanized. The edema intensity was mild, with no bubble and formation of a thick and dry crust from the 3rd day. The percentage of tissue shrinkage at 28 days was 66.67 ± 1.66%. There was no sign of infection, bleeding, or secretion. Within 28 days reepithelialization was incomplete, with fibroblastic proliferation and moderate fibrosis and presence of modeled dense collagen fibers. It is concluded that the model established is applicable in obtaining deep second-degree thermal burns in order to evaluate the healing action of therapeutic agents of topical use.