About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 462049, 10 pages
http://dx.doi.org/10.1155/2012/462049
Review Article

Artificial Chromosomes to Explore and to Exploit Biosynthetic Capabilities of Actinomycetes

Department of Science and Molecular and Biomolecular Technology, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy

Received 5 April 2012; Revised 20 June 2012; Accepted 4 July 2012

Academic Editor: Jozef Anné

Copyright © 2012 Rosa Alduina and Giuseppe Gallo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Raja and P. Prabakarana, “Actinomycetes and drug-an overview,” American Journal of Drug Discovery and Development, vol. 1, no. 2, pp. 75–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Adrio and A. L. Demain, “Genetic improvementof processes yielding microbial products,” FEMS Microbiology Reviews, vol. 30, no. 2, pp. 187–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. H. Baltz, “Genetic methods and strategies for secondary metabolite yield improvement in actinomycetes,” Antonie van Leeuwenhoek, vol. 79, no. 3-4, pp. 251–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Donadio, P. Monciardini, R. Alduina et al., “Microbial technologies for the discovery of novel bioactive metabolites,” Journal of Biotechnology, vol. 99, no. 3, pp. 187–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Mast, T. Weber, M. Gölz et al., “Characterization of the “pristinamycin supercluster” of Streptomyces pristinaespiralis,” Microbial Biotechnology, vol. 4, no. 2, pp. 192–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Kirby, “Chromosome diversity and similarity within the Actinomycetales,” FEMS Microbiology Letters, vol. 319, no. 1, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Kieser, M. J. Bibb, M. J. Buttner, et al., Practical Streptomyces Genetics, The John Innes Foundation, Norwich, UK; Crowes, London, UK, 2000.
  8. J. Handelsman, “Metagenomics: application of genomics to uncultured microorganisms,” Microbiology and Molecular Biology Reviews, vol. 68, no. 4, pp. 669–685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Steffensky, A. Mühlenweg, Z. X. Wang, S. M. Li, and L. Heide, “Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 5, pp. 1214–1222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Pojer, S. M. Li, and L. Heide, “Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics,” Microbiology, vol. 148, no. 12, pp. 3901–3911, 2002. View at Scopus
  11. M. Sosio, S. Stinchi, F. Beltrametti, A. Lazzarini, and S. Donadio, “The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species,” Chemistry and Biology, vol. 10, no. 6, pp. 541–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Cone, X. Yin, L. L. Grochowski, M. R. Parker, and T. M. Zabriskie, “The blasticidin S biosynthesis gene cluster from Streptomyces griseochromogenes: sequence analysis, organization, and initial characterization,” ChemBioChem, vol. 4, no. 9, pp. 821–828, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Singh, M. J. Seo, H. J. Kwon et al., “Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704),” Gene, vol. 376, no. 1-2, pp. 13–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Koběrská, J. Kopecký, J. Olšovská et al., “Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466,” Folia Microbiologica, vol. 53, no. 5, pp. 395–401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Xue, G. Ashley, C. R. Hutchinson, and D. V. Santi, “A multiplasmid approach to preparing large libraries of polyketides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 21, pp. 11740–11745, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Tang, S. Shah, L. Chung et al., “Cloning and heterologous expression of the epothilone gene cluster,” Science, vol. 287, no. 5453, pp. 640–642, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. T. M. Binz, S. C. Wenzel, H. J. Schnell, A. Bechthold, and R. Müller, “Heterologous expression and genetic engineering of the phenalinolactone biosynthetic gene cluster by using red/ET recombineering,” ChemBioChem, vol. 9, no. 3, pp. 447–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Hu, V. V. Phelan, C. M. Farnet, E. Zazopoulos, and B. O. Bachmann, “Reassembly of anthramycin biosynthetic gene cluster by using recombinogenic cassettes,” ChemBioChem, vol. 9, no. 10, pp. 1603–1608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Shizuya, B. Birren, U. J. Kim et al., “Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 18, pp. 8794–8797, 1992. View at Scopus
  20. W. R. Strohl, “Compilation and analysis of DNA sequences associated with apparent streptomycete promoters,” Nucleic Acids Research, vol. 20, no. 5, pp. 961–974, 1992. View at Scopus
  21. M. Sosio, F. Giusino, C. Cappellano, E. Bossi, A. M. Puglia, and S. Donadio, “Artificial chromosomes for antibiotic-producing actinomycetes,” Nature Biotechnology, vol. 18, no. 3, pp. 343–345, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Miao, M. F. Coëffet-LeGal, P. Brian et al., “Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry,” Microbiology, vol. 151, no. 5, pp. 1507–1523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Liu, H. Jiang, B. Haltli et al., “Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-Streptomyces artificial chromosome vector, pSBAC,” Journal of Natural Products, vol. 72, no. 3, pp. 389–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. H. Baltz, “Genetic manipulation of antibiotic-producing Streptomyces,” Trends in Microbiology, vol. 6, no. 2, pp. 76–83, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Matsushima, M. C. Broughton, J. R. Turner, and R. H. Baltz, “Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal insertions on macrolide A83543 production,” Gene, vol. 146, no. 1, pp. 39–45, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Matsushima and R. H. Baltz, “A gene cloning system for ‘Streptomyces toyocaensis’,” Microbiology, vol. 142, no. 2, pp. 261–267, 1996. View at Scopus
  27. M. D. McMahon, C. Guan, J. Handelsman, and M. G. Thomas, “Metagenomics in Streptomyces lividans reveals host-dependent functional expression,” Applied Environmental Microbiology, vol. 78, no. 10, pp. 3622–3629, 2012.
  28. R. Alduina, S. De Grazia, L. Dolce et al., “Artificial chromosome libraries of Streptomyces coelicolor A3(2) and Planobispora rosea,” FEMS Microbiology Letters, vol. 218, no. 1, pp. 181–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Alduina, A. Giardina, G. Gallo et al., “Expression in Streptomyces lividans of Nonomuraea genes cloned in an artificial chromosome,” Applied Microbiology and Biotechnology, vol. 68, no. 5, pp. 656–662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. C. Alexander, J. Rock, X. He, P. Brian, V. Miao, and R. H. Baltz, “Development of a genetic system for combinatorial biosynthesis of lipopeptides in Streptomyces fradiae and heterologous expression of the A54145 biosynthesis gene cluster,” Applied and Environmental Microbiology, vol. 76, no. 20, pp. 6877–6887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Feng, L. Wang, S. R. Rajski, Z. Xu, M. F. Coeffet-LeGal, and B. Shen, “Engineered production of iso-migrastatin in heterologous Streptomyces hosts,” Bioorganic and Medicinal Chemistry, vol. 17, no. 6, pp. 2147–2153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Dai, Y. Ouyang, G. Wang, and X. Li, “Streptomyces autolyticus JX-47 large-insert bacterial artificial chromosome library construction and identification of clones covering geldanamycin biosynthesis gene cluster,” Current Microbiology, vol. 63, no. 1, pp. 68–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Ziermann and M. C. Betlach, “Recombinant polyketide synthesis in Streptomyces: engineering of improved host strains,” BioTechniques, vol. 26, no. 1, pp. 106–110, 1999. View at Scopus
  34. B. Floriano and M. Bibb, “afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2),” Molecular Microbiology, vol. 21, no. 2, pp. 385–396, 1996. View at Scopus
  35. K. F. Chater and L. C. Wilde, “Streptomyces albus G mutants defective in the SalGI restriction-modification system,” Journal of General Microbiology, vol. 116, no. 2, pp. 323–334, 1980. View at Scopus
  36. M. Komatsu, T. Uchiyama, S. Omura, D. E. Cane, and H. Ikeda, “Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 6, pp. 2646–2651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. L. Beyazova, B. C. Brodsky, M. C. Shearer, and A. C. Horan, “Preparation of actinomycete DNA for pulsed-field gel electrophoresis,” International Journal of Systematic Bacteriology, vol. 45, no. 4, pp. 852–854, 1995. View at Scopus
  38. H. Zhang, K. Skalina, M. Jiang, and B. A. Pfeifer, “Improved E. coli erythromycin a production through the application of metabolic and bioprocess engineering,” Biotechnology Progress, vol. 8, no. 1, pp. 292–296, 2012.
  39. S. D. Bentley, K. F. Chater, A. M. Cerdeno-Tarraga, et al., “Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2),” Nature, vol. 417, pp. 141–147, 2002.
  40. Z. Hu, D. A. Hopwood, and C. Khosla, “Directed transfer of large DNA fragments between Streptomyces species,” Applied and Environmental Microbiology, vol. 66, no. 5, pp. 2274–2277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Penn, X. Li, A. Whiting et al., “Heterologous production of daptomycin in Streptomyces lividans,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 2, pp. 121–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. D. J. MacNeil, “Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis,” Journal of Bacteriology, vol. 170, no. 12, pp. 5607–5612, 1988. View at Scopus
  43. H. Ikeda, J. Ishikawa, A. Hanamoto et al., “Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis,” Nature Biotechnology, vol. 21, no. 5, pp. 526–531, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. R. H. Baltz, “Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters,” Journal of Industrial Microbiology and Biotechnology, vol. 37, no. 8, pp. 759–772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. P. Gomez-Escribano and M. J. Bibb, “Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters,” Microbial Biotechnology, vol. 4, no. 2, pp. 207–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Zhou, X. Jing, P. Xie, et al., “Sequential deletion of all the PKS and NRPS biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor,” FEMS Microbiology Letters, vol. 333, no. 2, pp. 169–179, 2012.
  47. A. Talà, G. Wang, M. Zemanova, S. Okamoto, K. Ochi, and P. Alifano, “Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase,” Journal of Bacteriology, vol. 191, no. 3, pp. 805–814, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Yang, X. Zhu, X. Wu et al., “Titer improvement of iso-migrastatin in selected heterologous Streptomyces hosts and related analysis of mRNA expression by quantitative RT-PCR,” Applied Microbiology and Biotechnology, vol. 89, no. 6, pp. 1709–1719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. A. Richardson, S. Kuhstoss, M. L. B. Huber et al., “Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis,” Journal of Bacteriology, vol. 172, no. 7, pp. 3790–3798, 1990. View at Scopus
  50. V. Miao, M. F. Coëffet-Le Gal, K. Nguyen et al., “Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics,” Chemistry and Biology, vol. 13, no. 3, pp. 269–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Sosio, E. Bossi, and S. Donadio, “Assembly of large genomic segments in artificial chromosomes by homologous recombination in Escherichia coli,” Nucleic acids research, vol. 29, no. 7, p. E37, 2001. View at Scopus
  52. O. Perlova, J. Fu, S. Kuhlmann et al., “Reconstitution of the myxothiazol biosynthetic gene cluster by red/ET recombination and heterologous expression in Myxococcus xanthus,” Applied and Environmental Microbiology, vol. 72, no. 12, pp. 7485–7494, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. D. E. Gillespie, S. F. Brady, A. D. Bettermann et al., “Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA,” Applied and Environmental Microbiology, vol. 68, no. 9, pp. 4301–4306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Giardina, R. Alduina, E. Gottardi, V. Di Caro, R. D. Süssmuth, and A. M. Puglia, “Two heterologously expressed Planobispora rosea proteins cooperatively induce Streptomyces lividans thiostrepton uptake and storage from the extracellular medium,” Microbial Cell Factories, vol. 9, article 44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. R. H. Baltz, “Renaissance in antibacterial discovery from actinomycetes,” Current Opinion in Pharmacology, vol. 8, no. 5, pp. 557–563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. O. Béjà, M. T. Suzuki, E. V. Koonin et al., “Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage,” Environmental Microbiology, vol. 2, no. 5, pp. 516–529, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Martinez, S. J. Kolvek, C. L. T. Yip et al., “Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts,” Applied and Environmental Microbiology, vol. 70, no. 4, pp. 2452–2463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. M. R. Rondon, P. R. August, A. D. Bettermann et al., “Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms,” Applied and Environmental Microbiology, vol. 66, no. 6, pp. 2541–2547, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. A. E. Berry, C. Chiocchini, T. Selby, M. Sosio, and E. M. H. Wellington, “Isolation of high molecular weight DNA from soil for cloning into BAC vectors,” FEMS Microbiology Letters, vol. 223, no. 1, pp. 15–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Singh, A. Behal, N. Singla et al., “Metagenomics: concept, methodology, ecological inference and recent advances,” Biotechnology Journal, vol. 4, no. 4, pp. 480–494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Ouyang, S. Dai, L. Xie et al., “Isolation of high molecular weight DNA from marine sponge bacteria for BAC library construction,” Marine Biotechnology, vol. 12, no. 3, pp. 318–325, 2010. View at Publisher · View at Google Scholar · View at Scopus