About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 469726, 9 pages
http://dx.doi.org/10.1155/2012/469726
Research Article

Validation of a New Animal Model of Vulnerable Plaques by Intravascular Optical Coherence Tomography In Vivo

1Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
2LightLab Imaging Inc., St. Jude Medical, Westford, MA 01886, USA

Received 21 July 2012; Accepted 31 August 2012

Academic Editor: M. Ilyas Kamboh

Copyright © 2012 Yan Fang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Davies, “Anatomic features in victims of sudden coronary death: coronary artery pathology,” Circulation, vol. 85, no. 1, pp. I19–I24, 1992. View at Scopus
  2. A. P. Burke, A. Farb, G. T. Malcom, Y. H. Liang, J. Smialek, and R. Virmani, “Coronary risk factors and plaque morphology in men with coronary disease who died suddenly,” The New England Journal of Medicine, vol. 336, no. 18, pp. 1276–1282, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Naghavi, P. Libby, E. Falk et al., “From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I,” Circulation, vol. 108, no. 14, pp. 1664–1672, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Virmani, A. P. Burke, A. Farb, and F. D. Kolodgie, “Pathology of the vulnerable plaque,” Journal of the American College of Cardiology, vol. 47, no. 8, pp. C13–C18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Yamagishi, M. Terashima, K. Awano et al., “Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome,” Journal of the American College of Cardiology, vol. 35, no. 1, pp. 106–111, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Ohara, K. Toyoda, R. Otsubo et al., “Eccentric stenosis of the carotid artery associated with ipsilateral cerebrovascular events,” American Journal of Neuroradiology, vol. 29, no. 6, pp. 1200–1203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Nair, L. Gruberg, and R. Beyar, “The eccentric lumenology,” Acute Cardiac Care, vol. 8, no. 2, pp. 87–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Phinikaridou, F. L. Ruberg, K. J. Hallock et al., “In vivo detection of vulnerable atherosclerotic plaque by MRI in a rabbit model,” Circulation, vol. 3, no. 3, pp. 323–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Chiesa, C. Di Mario, N. Colombo et al., “Development of a lipid-rich, soft plaque in rabbits, monitored by histology and intravascular ultrasound,” Atherosclerosis, vol. 156, no. 2, pp. 277–287, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Yabushita, B. E. Bouma, S. L. Houser et al., “Characterization of human atherosclerosis by optical coherence tomography,” Circulation, vol. 106, no. 13, pp. 1640–1645, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Ben-Dor, M. Mahmoudi, A. D. Pichard, L. F. Satler, and R. Waksman, “Optical coherence tomography: a new imaging modality for plaque characterization and stent implantation,” Journal of Interventional Cardiology, vol. 24, no. 2, pp. 184–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Karanasos, J. Ligthart, K. Witberg, G. van Soest, N. Bruining, and E. Regar, “Optical coherence tomography: potential clinical applications,” Current Cardiovascular Imaging Reports, vol. 5, no. 4, pp. 206–220, 2012.
  13. L. Meng, B. Lv, S. Zhang, and B. Yv, “In vivo optical coherence tomography of experimental thrombosis in a rabbit carotid model,” Heart, vol. 94, no. 6, pp. 777–780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Phinikaridou, K. J. Hallock, Y. Qiao, and J. A. Hamilton, “A robust rabbit model of human atherosclerosis and atherothrombosis,” Journal of Lipid Research, vol. 50, no. 5, pp. 787–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Tian, S. Hu, Y. Sun et al., “A novel model of atherosclerosis in rabbits using injury to arterial walls induced by ferric chloride as evaluated by optical coherence tomography as well as intravascular ultrasound and histology,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 121867, 6 pages, 2012. View at Publisher · View at Google Scholar
  16. Y. Shi, J. E. O'Brien, A. Fard, J. D. Mannion, D. Wang, and A. Zalewski, “Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries,” Circulation, vol. 94, no. 7, pp. 1655–1664, 1996. View at Scopus
  17. M. Zimarino, F. Prati, E. Stabile et al., “Optical coherence tomography accurately identifies intermediate atherosclerotic lesions-An in vivo evaluation in the rabbit carotid artery,” Atherosclerosis, vol. 193, no. 1, pp. 94–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. C. Stary, “Natural history and histological classification of atherosclerotic lesions an update,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 5, pp. 1177–1178, 2000. View at Scopus
  19. H. C. Stary, A. B. Chandler, R. E. Dinsmore et al., “A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the council on arteriosclerosis, American heart association,” Circulation, vol. 92, no. 5, pp. 1355–1374, 1995. View at Scopus
  20. R. Ross and J. A. Glomset, “The pathogenesis of atherosclerosis (first of two parts),” The New England Journal of Medicine, vol. 295, no. 7, pp. 369–377, 1976. View at Scopus
  21. R. Ross and J. A. Glomset, “The pathogenesis of atherosclerosis (second of two parts),” The New England Journal of Medicine, vol. 295, no. 8, pp. 420–425, 1976. View at Scopus
  22. T. Okabe, M. Hoshiga, N. Negoro et al., “Rabbit plaque models closely resembling lesions in human coronary artery disease,” International Journal of Cardiology, vol. 147, no. 2, pp. 271–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Libby, P. M. Ridker, and A. Maseri, “Inflammation and atherosclerosis,” Circulation, vol. 105, no. 9, pp. 1135–1143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. I. K. Jang, G. J. Tearney, B. MacNeill et al., “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation, vol. 111, no. 12, pp. 1551–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Yonetsu, T. Kakuta, T. Lee et al., “In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography,” European Heart Journal, vol. 32, no. 10, pp. 1251–1259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Davies, P. D. Richardson, N. Woolf, D. R. Katz, and J. Mann, “Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content,” British Heart Journal, vol. 69, no. 5, pp. 377–381, 1993. View at Scopus
  27. S. M. Schwartz, R. Virmani, and M. E. Rosenfeld, “The good smooth muscle cells in atherosclerosis,” Current Atherosclerosis Reports, vol. 2, no. 5, pp. 422–429, 2000. View at Scopus
  28. P. R. Moreno, K. R. Purushothaman, V. Fuster et al., “Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability,” Circulation, vol. 110, no. 14, pp. 2032–2038, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Sasaki, M. Kuzuya, K. Nakamura et al., “A simple method of plaque rupture induction in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 6, pp. 1304–1309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. H. De Leon, J. D. Ollerenshaw, K. K. Griendling, and J. N. Wilcox, “Adventitial cells do not contribute to neointimal mass after balloon angioplasty of the rat common carotid artery,” Circulation, vol. 104, no. 14, pp. 1591–1593, 2001. View at Scopus