About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 480289, 6 pages
http://dx.doi.org/10.1155/2012/480289
Review Article

Autism Spectrum Disorders: Is Mesenchymal Stem Cell Personalized Therapy the Future?

1Division of Pharmacology “L. Donatelli”, Department of Experimental Medicine, Second University of Naples, Via S. Maria di Costantinopoli, 16-80138 Napoli, Italy
2Centre for Autism, La Forza del Silenzio, Caserta, 80138 Naples, Italy
3Department of Internal and Experimental Medicine “Magrassi-Lanzara”, Second University of Naples, 80138 Naples, Italy
4Center for Celiac Research and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
5Division of Biotechnology and Molecular Biology “A. Cascino”, Department of Experimental Medicine, Second University of Naples, 80138 Naples, Italy
6Biomedical Centre for Autism Research and Treatment, 70122 Bari, Italy

Received 11 July 2011; Accepted 29 September 2011

Academic Editor: Ken-ichi Isobe

Copyright © 2012 Dario Siniscalco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fasano, “Intestine, leaky gut, autism and probiotics,” in Cutting Edge Therapies, N. J. Lyndhurst, Ed., pp. 192–198, Barnes & Noble, 2010.
  2. K. Williams, D. M. Wheeler, N. Silove, and P. Hazell, “Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD),” Cochrane Database of Systematic Reviews, vol. 8, Article ID CD004677, 2010.
  3. R. Toro, M. Konyukh, R. Delorme et al., “Key role for gene dosage and synaptic homeostasis in autism spectrum disorders,” Trends in Genetics, vol. 26, no. 8, pp. 363–372, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. J. Bradstreet, S. Smith, M. Baral, and D. A. Rossignol, “Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder,” Alternative Medicine Review, vol. 15, no. 1, pp. 15–32, 2010. View at Scopus
  5. A. M. Persico and T. Bourgeron, “Searching for ways out of the autism maze: genetic, epigenetic and environmental clues,” Trends in Neurosciences, vol. 29, no. 7, pp. 349–358, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. R. Toro, M. Konyukh, R. Delorme et al., “Key role for gene dosage and synaptic homeostasis in autism spectrum disorders,” Trends in Genetics, vol. 26, no. 8, pp. 363–372, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. P. El-Fishawy and M. W. State, “The genetics of autism: key issues, recent findings, and clinical implications,” Psychiatric Clinics of North America, vol. 33, no. 1, pp. 83–105, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. R. Herbert, “Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders,” Current Opinion in Neurology, vol. 23, no. 2, pp. 103–110, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. Muhle, S. V. Trentacoste, and I. Rapin, “The genetics of autism,” Pediatrics, vol. 113, no. 5, pp. e472–e486, 2004. View at Scopus
  10. S. E. Levy, D. S. Mandell, and R. T. Schultz, “Autism,” The Lancet, vol. 374, no. 9701, pp. 1627–1638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. CDC, “Surveillance summaries,” Morbidity and Mortality Weekly Report, vol. 56, pp. 1–28, 2007.
  12. P. A. Main, M. T. Angley, P. Thomas, C. E. O'Doherty, and M. Fenech, “Folate and methionine metabolism in autism: a systematic review,” American Journal of Clinical Nutrition, vol. 91, no. 6, pp. 1598–1620, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. M. Reiersen and R. D. Todd, “Co-occurrence of ADHD and autism spectrum disorders: phenomenology and treatment,” Expert Review of Neurotherapeutics, vol. 8, no. 4, pp. 657–669, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. T. McCracken, “Safety issues with drug therapies for autism spectrum disorders,” Journal of Clinical Psychiatry, vol. 66, supplement 10, pp. 32–37, 2005. View at Scopus
  15. M. Tandon and J. R. Pruett Jr., “An overview of the use of antidepressants in children and adolescents,” Missouri Medicine, vol. 105, no. 1, pp. 79–85, 2008. View at Scopus
  16. R. M. Nevels, E. E. Dehon, K. Alexander, and S. T. Gontkovsky, “Psychopharmacology of aggression in children and adolescents with primary neuropsychiatric disorders: a review of current and potentially promising treatment options,” Experimental and Clinical Psychopharmacology, vol. 18, no. 2, pp. 184–201, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. D. M. Dhossche, A. Shah, and L. Wing, “Blueprints for the assessment, treatment, and future study of catatonia in autism spectrum disorders,” International Review of Neurobiology, vol. 72, pp. 267–284, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. D. A. Rossignol, “Novel and emerging treatments for autism spectrum disorders: a systematic review,” Annals of Clinical Psychiatry, vol. 21, no. 4, pp. 213–236, 2009. View at Scopus
  19. H. G. Şenel, “Parents' views and experiences about complementary and alternative medicine treatments for their children with autistic spectrum disorder,” Journal of Autism and Developmental Disorders, vol. 40, no. 4, pp. 494–503, 2010. View at Publisher · View at Google Scholar · View at PubMed
  20. V. C. Wong and J. G. Sun, “Randomized controlled trial of acupuncture versus sham acupuncture in autism spectrum disorder,” Journal of Alternative and Complementary Medicine, vol. 16, no. 5, pp. 545–553, 2010. View at Publisher · View at Google Scholar · View at PubMed
  21. P. A. Filipek, R. Steinberg-Epstein, and T. M. Book, “Intervention for autistic spectrum disorders,” NeuroRx, vol. 3, no. 2, pp. 207–216, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. L. A. Vismara and S. J. Rogers, “Behavioral treatments in autism spectrum disorder: what do we know?” Annual Review of Clinical Psychology, vol. 6, pp. 447–468, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. C. Kasari and K. Lawton, “New directions in behavioral treatment of autism spectrum disorders,” Current Opinion in Neurology, vol. 23, no. 2, pp. 137–143, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. L. C. Murdock and J. Q. Hobbs, “Picture me playing: increasing pretend play dialogue of children with autism spectrum disorders,” Journal of Autism and Developmental Disorders, vol. 41, pp. 870–878, 2011. View at Publisher · View at Google Scholar · View at PubMed
  25. F. Frankel and C. Whitham, “Parent-assisted group treatment for friendship problems of children with autism spectrum disorders,” Brain Research, vol. 1380, pp. 240–245, 2011. View at Publisher · View at Google Scholar · View at PubMed
  26. M. Valenti, R. Cerbo, F. Masedu, M. De Caris, and G. Sorge, “Intensive intervention for children and adolescents with autism in a community setting in Italy: a single-group longitudinal study,” Child and Adolescent Psychiatry and Mental Health, vol. 4, article no. 23, 2010. View at Publisher · View at Google Scholar · View at PubMed
  27. M. B. Ospina, J. K. Seida, B. Clark et al., “Behavioural and developmental interventions for autism spectrum disorder: a clinical systematic review,” PLoS One, vol. 3, no. 11, Article ID e3755, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. A. C. Stahmer, L. Schreibman, and A. B. Cunningham, “Toward a technology of treatment individualization for young children with autism spectrum disorders,” Brain Research, vol. 1380, pp. 229–239, 2011. View at Publisher · View at Google Scholar · View at PubMed
  29. D. Coury, “Medical treatment of autism spectrum disorders,” Current Opinion in Neurology, vol. 23, no. 2, pp. 131–136, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. D. Siniscalco, N. Sullo, S. Maione, F. Rossi, and B. D'Agostino, “Stem cell therapy: the great promise in lung disease,” Therapeutic Advances in Respiratory Disease, vol. 2, no. 3, pp. 173–177, 2008. View at Publisher · View at Google Scholar · View at PubMed
  31. G. Brooke, M. Cook, C. Blair et al., “Therapeutic applications of mesenchymal stromal cells,” Seminars in Cell and Developmental Biology, vol. 18, no. 6, pp. 846–858, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. A. Arthur, A. Zannettino, and S. Gronthos, “The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair,” Journal of Cellular Physiology, vol. 218, no. 2, pp. 237–245, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. P. C. Chagastelles, N. B. Nardi, and M. Camassola, “Biology and applications of mesenchymal stem cells,” Science Progress, vol. 93, no. 2, pp. 113–127, 2010. View at Publisher · View at Google Scholar
  34. B. Short, N. Brouard, T. Occhiodoro-Scott, A. Ramakrishnan, and P. J. Simmons, “Mesenchymal stem cells,” Archives of Medical Research, vol. 34, no. 6, pp. 565–571, 2003. View at Publisher · View at Google Scholar · View at PubMed
  35. N. Beyer Nardi and L. da Silva Meirelles, “Mesenchymal stem cells: isolation, in vitro expansion and characterization,” Handbook of Experimental Pharmacology, no. 174, pp. 249–282, 2006.
  36. S. Sethe, A. Scutt, and A. Stolzing, “Aging of mesenchymal stem cells,” Ageing Research Reviews, vol. 5, no. 1, pp. 91–116, 2006. View at Publisher · View at Google Scholar · View at PubMed
  37. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at PubMed
  38. A. Giordano, U. Galderisi, and I. R. Marino, “From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells,” Journal of Cellular Physiology, vol. 211, no. 1, pp. 27–35, 2007. View at Publisher · View at Google Scholar · View at PubMed
  39. K. L. Pricola, N. Z. Kuhn, H. Haleem-Smith, Y. Song, and R. S. Tuan, “Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism,” Journal of Cellular Biochemistry, vol. 108, no. 3, pp. 577–588, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. K. Le Blanc and M. F. Pittenger, “Mesenchymal stem cells: progress toward promise,” Cytotherapy, vol. 7, no. 1, pp. 36–45, 2005. View at Publisher · View at Google Scholar · View at PubMed
  41. K. J. Beggs, A. Lyubimov, J. N. Borneman et al., “Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons,” Cell Transplantation, vol. 15, no. 8-9, pp. 711–721, 2006.
  42. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Publisher · View at Google Scholar · View at PubMed
  43. C. E. P. Aronin and R. S. Tuan, “Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells,” Birth Defects Research Part C Embryo Today, vol. 90, no. 1, pp. 67–74, 2010. View at Publisher · View at Google Scholar · View at PubMed
  44. D. Siniscalco, “Transplantation of human mesenchymal stem cells in the study of neuropathic pain,” Methods in Molecular Biology, vol. 617, pp. 337–345, 2010. View at Publisher · View at Google Scholar
  45. P. A. Sotiropoulou and M. Papamichail, “Immune properties of mesenchymal stem cells,” Methods in Molecular Biology, vol. 407, pp. 225–243, 2007.
  46. R. E. Newman, D. Yoo, M. A. LeRoux, and A. Danilkovitch-Miagkova, “Treatment of inflammatory diseases with mesenchymal stem cells,” Inflammation and Allergy, vol. 8, no. 2, pp. 110–123, 2009. View at Publisher · View at Google Scholar
  47. T. Meyerrose, S. Olson, S. Pontow et al., “Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors,” Advanced Drug Delivery Reviews, vol. 62, no. 12, pp. 1167–1174, 2010. View at Publisher · View at Google Scholar · View at PubMed
  48. K. Ksiazek, “A comprehensive review on mesenchymal stem cell growth and senescence,” Rejuvenation Research, vol. 12, no. 2, pp. 105–116, 2009. View at Publisher · View at Google Scholar · View at PubMed
  49. D. Siniscalco, C. Giordano, U. Galderisi et al., “Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice,” Cellular and Molecular Life Sciences, vol. 67, no. 4, pp. 655–669, 2010. View at Publisher · View at Google Scholar · View at PubMed
  50. M. K. Majumdar, M. A. Thiede, J. D. Mosca, M. Moorman, and S. L. Gerson, “Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells,” Journal of Cellular Physiology, vol. 176, no. 1, pp. 57–66, 1998.
  51. L. da Silva Meirelles, A. M. Fontes, D. T. Covas, and A. I. Caplan, “Mechanisms involved in the therapeutic properties of mesenchymal stem cells,” Cytokine and Growth Factor Reviews, vol. 20, no. 5-6, pp. 419–427, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Giuliani, M. Fleury, A. Vernochet et al., “Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation,” PLoS One, vol. 6, no. 5, Article ID e19988, 2011. View at Publisher · View at Google Scholar · View at PubMed
  53. M. J. Hoogduijn, F. Popp, R. Verbeek et al., “The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy,” International Immunopharmacology, vol. 10, no. 12, pp. 1496–1500, 2010. View at Publisher · View at Google Scholar · View at PubMed
  54. M. D. Nicola, C. Carlo-Stella, M. Magni et al., “Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli,” Blood, vol. 99, no. 10, pp. 3838–3843, 2002. View at Publisher · View at Google Scholar
  55. S. Beyth, Z. Borovsky, D. Mevorach et al., “Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness,” Blood, vol. 105, no. 5, pp. 2214–2219, 2005. View at Publisher · View at Google Scholar · View at PubMed
  56. F. Dazzi and F. M. Marelli-Berg, “Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells,” European Journal of Immunology, vol. 38, no. 6, pp. 1479–1482, 2008. View at Publisher · View at Google Scholar · View at PubMed
  57. P. Ashwood, B. A. Corbett, A. Kantor, H. Schulman, J. Van de Water, and D. G. Amaral, “In search of cellular immunophenotypes in the blood of children with autism,” PLoS One, vol. 6, no. 5, Article ID e19299, 2011.
  58. K. Suzuki, H. Matsuzaki, K. Iwata et al., “Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders,” PLoS One, vol. 6, no. 5, Article ID e20470, 2011. View at Publisher · View at Google Scholar · View at PubMed
  59. S. Gupta, D. Samra, and S. Agrawal, “Adaptive and innate immune responses in autism: rationale for therapeutic use of intravenous immunoglobulin,” Journal of Clinical Immunology, vol. 30, supplement 1, pp. S90–S96, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. A. M. Enstrom, C. E. Onore, J. A. Van de Water, and P. Ashwood, “Differential monocyte responses to TLR ligands in children with autism spectrum disorders,” Brain, Behavior, and Immunity, vol. 24, no. 1, pp. 64–71, 2010. View at Publisher · View at Google Scholar · View at PubMed
  61. A. L. Oblak, D. L. Rosene, T. L. Kemper, M. L. Bauman, and G. J. Blatt, “Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism,” Autism Research, vol. 4, pp. 200–211, 2011.
  62. E. R. Whitney, T. L. Kemper, D. L. Rosene, M. L. Bauman, and G. J. Blatt, “Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells,” Journal of Neuroscience Research, vol. 87, no. 10, pp. 2245–2254, 2009. View at Publisher · View at Google Scholar · View at PubMed
  63. E. Courchesne, C. M. Karns, H. R. Davis et al., “Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study,” Neurology, vol. 57, no. 2, pp. 245–254, 2001.
  64. M. L. Bauman and T. L. Kemper, “Neuroanatomic observations of the brain in autism: a review and future directions,” International Journal of Developmental Neuroscience, vol. 23, no. 2-3, pp. 183–187, 2005. View at Publisher · View at Google Scholar · View at PubMed
  65. D. A. Fortin, T. Srivastava, and T. R. Soderling, “Structural modulation of dendritic spines during synaptic plasticity,” Neuroscientist. In press.
  66. A. T. Sørensen, N. Rogelius, C. Lundberg, and M. Kokaia, “Activity-dependent long-term plasticity of afferent synapses on grafted stem/progenitor cell-derived neurons,” Experimental Neurology, vol. 229, no. 2, pp. 274–281, 2011. View at Publisher · View at Google Scholar · View at PubMed
  67. R. C. Rodrigues Hell, M. M. Silva Costa, A. M. Goes, and A. L. Oliveira, “Local injection of BDNF producing mesenchymal stem cells increases neuronal survival and synaptic stability following ventral root avulsion,” Neurobiology of Disease, vol. 33, no. 2, pp. 290–300, 2009. View at Publisher · View at Google Scholar · View at PubMed
  68. Y. K. Chang, M. H. Chen, Y. H. Chiang et al., “Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells,” Journal of Biomedical Science, vol. 18, article 54, no. 1, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. J. Deng, Z. M. Zou, T. L. Zhou et al., “Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue,” Neurological Sciences, vol. 32, no. 4, pp. 641–651, 2011. View at Publisher · View at Google Scholar · View at PubMed
  70. L. Li and J. Jiang, “Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms,” Frontier Medical, vol. 5, pp. 33–39, 2011.
  71. D. J. Prockop, C. A. Gregory, and J. L. Spees, “One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 11917–11923, 2003. View at Publisher · View at Google Scholar · View at PubMed
  72. A. Augello, T. B. Kurth, and C. De Bari, “Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches,” European Cells and Materials, vol. 20, pp. 121–133, 2010.
  73. E. N. Momin, A. Mohyeldin, H. A. Zaidi, G. Vela, and A. Quiñones-Hinojosa, “Mesenchymal stem cells: new approaches for the treatment of neurological diseases,” Current Stem Cell Research and Therapy, vol. 5, no. 4, pp. 326–344, 2010. View at Publisher · View at Google Scholar