About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 503093, 8 pages
http://dx.doi.org/10.1155/2012/503093
Research Article

Effects of Norepinephrine and Acetylcholine on the Development of Cultured Leydig Cells in Mice

College of Animal Science & Technology, Agricultural University of Hebei, Baoding 071001, China

Received 8 April 2012; Revised 27 May 2012; Accepted 18 June 2012

Academic Editor: Stelvio M. Bandiera

Copyright © 2012 Shuying Huo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. L. C. Mendis-Handagama, P. A. Watkins, S. J. Gelber, and T. J. Scallen, “The effect of chronic luteinizing hormone treatment on adult rat Leydig cells,” Tissue and Cell, vol. 30, no. 1, pp. 64–73, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. M. P. Hardy, B. R. Zirkin, and L. L. Ewing, “Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat,” Endocrinology, vol. 124, no. 2, pp. 762–770, 1989. View at Scopus
  3. K. J. Teerds, E. Rijntjes, M. B. Veldhuizen-Tsoerkan, F. F. G. Rommerts, and M. de Boer-Brouwer, “The development of rat Leydig cell progenitors in vitro: how essential is luteinising hormone?” Journal of Endocrinology, vol. 194, no. 3, pp. 579–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Nagatomo and K. Koike, “Recent advances in structure, binding sites with ligands and pharmacological function of β-adrenoceptors obtained by molecular biology and molecular modeling,” Life Sciences, vol. 66, no. 25, pp. 2419–2426, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. S. K. McCune, M. M. Voigt, and J. M. Hill, “Expression of multiple alpha adrenergic receptor subtype messenger RNAs in the adult rat brain,” Neuroscience, vol. 57, no. 1, pp. 143–151, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. R. A. F. Dixon, B. K. Kobilka, and D. J. Strader, “Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin,” Nature, vol. 321, no. 6065, pp. 75–79, 1986. View at Scopus
  7. R. M. Eglen, A. Choppin, M. P. Dillon, and S. Hegde, “Muscarinic receptor ligands and their therapeutic potential,” Current Opinion in Chemical Biology, vol. 3, no. 4, pp. 426–432, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Mayerhofer, R. W. Steger, G. Gow, and A. Bartke, “Catecholamines stimulate testicular testosterone release of the immature golden hamster via interaction with alpha- and beta-adrenergic receptors,” Acta Endocrinologica, vol. 127, no. 6, pp. 526–530, 1992. View at Scopus
  9. A. L. Favaretto, M. M. Valença, D. L. Picanço-Diniz, and J. A. Antunes-Rodrigues, “Inhibitory role of cholinergic agonists on testosterone secretion by purified rat Leydig cells,” Archives Internationales de Physiologie, de Biochimie et de Biophysique, vol. 101, no. 6, pp. 333–335, 1993. View at Scopus
  10. T. F. G. Lucas, M. C. W. Avellar, and C. S. Porto, “Effects of carbachol on rat Sertoli cell proliferation and muscarinic acetylcholine receptors regulation: an in vitro study,” Life Sciences, vol. 75, no. 14, pp. 1761–1773, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Chernogubova, D. S. Hutchinson, J. Nedergaard, and T. Bengtsson, “α1- and β1-adrenoceptor signaling fully compensates for β3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake,” Endocrinology, vol. 146, no. 5, pp. 2271–2284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Zimring, L. M. Kapp, M. Yamada, J. Wess, and J. A. Kapp, “Regulation of CD8+ cytolytic T lymphocyte differentiation by a cholinergic pathway,” Journal of Neuroimmunology, vol. 164, no. 1-2, pp. 66–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. T. Akingbemi, R. Ge, C. S. Rosenfeld et al., “Estrogen receptor-α gene deficiency enhances androgen biosynthesis in the mouse Leydig cell,” Endocrinology, vol. 144, no. 1, pp. 84–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Fu, J. Liu, J. Fan et al., “Novel evidence that testosterone promotes cell proliferation and differentiation via G protein-coupled receptors in the rat L6 skeletal muscle myoblast cell line,” Journal of Cellular Physiology, vol. 227, no. 1, pp. 98–107, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Uehara, M. Kaneko, S. Tanaka, Y. Okuma, and Y. Nomura, “Possible involvement of p38 MAP kinase in HSP70 expression induced by hypoxia in rat primary astrocytes,” Brain Research, vol. 823, no. 1-2, pp. 226–230, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Zhang and S. Cui, “Effects of daidzein on testosterone synthesis and secretion in cultured mouse leydig cells,” Asian-Australasian Journal of Animal Sciences, vol. 22, no. 5, pp. 618–625, 2009. View at Scopus
  17. G. Wang, D. Chen, H. Luo et al., “Low-dose ethanol suppresses 17β-estradiol activity in GH4C1 pituitary tumor cells,” Cell Biology and Toxicology, vol. 26, no. 3, pp. 265–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. B. S. Ariyaratne, S. M. L. C. Mendis-Handagama, D. B. Hales, and J. I. Mason, “Studies on the onset of Leydig precursor cell differentiation in the prepubertal rat testis,” Biology of Reproduction, vol. 63, no. 1, pp. 165–171, 2000. View at Scopus
  19. J. M. Saez, “Leydig cells: endocrine, paracrine, and autocrine regulation,” Endocrine Reviews, vol. 15, no. 5, pp. 574–626, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. R. S. Ge, Q. Dong, C. M. Sottas, V. Papadopoulos, B. R. Zirkin, and M. P. Hardy, “In search of rat stem Leydig cells: identification, isolation, and lineage-specific development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2719–2724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. O. Koh and M. O. Kim, “Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes,” Journal of Veterinary Medical Science, vol. 68, no. 10, pp. 1013–1017, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Ruwanpura, R. I. McLachlan, K. L. Matthiesson, and S. J. Meachem, “Gonadotrophins regulate germ cell survival, not proliferation, in normal adult men,” Human Reproduction, vol. 23, no. 2, pp. 403–411, 2008. View at Publisher · View at Google Scholar · View at Scopus