About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 504037, 10 pages
http://dx.doi.org/10.1155/2012/504037
Research Article

Long-Term Left Ventricular Remodelling in Rat Model of Nonreperfused Myocardial Infarction: Sequential MR Imaging Using a 3T Clinical Scanner

1MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, Observatory 7925, South Africa
2Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory 7925, South Africa
3Division of Radiodiagnosis, Stellenbosch University, Matieland 7602, South Africa
4Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
5Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
6Centre for Research in Computational and Applied Mechanics, University of Cape Town, Rondebosch 7701, South Africa
7Centre for High Performance Computing, Rosebank 7700, South Africa

Received 6 March 2012; Accepted 11 June 2012

Academic Editor: M. Piacentini

Copyright © 2012 Muhammad G. Saleh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Pfeffer and E. Braunwald, “Ventricular remodeling after myocardial infarction: experimental observations and clinical implications,” Circulation, vol. 81, no. 4, pp. 1161–1172, 1990. View at Scopus
  2. P. Gaudron, C. Eilles, I. Kugler, and G. Ertl, “Progressive left ventricular dysfunction and remodeling after myocardial infarction: potential mechanisms and early predictors,” Circulation, vol. 87, no. 3, pp. 755–763, 1993. View at Scopus
  3. M. A. Pfeffer, J. M. Pfeffer, and M. C. Fishbein, “Myocardial infarct size and ventricular function in rats,” Circulation Research, vol. 44, no. 4, pp. 503–512, 1979. View at Scopus
  4. M. Nahrendorf, F. Wiesmann, K. H. Hiller et al., “Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats,” Journal of Magnetic Resonance Imaging, vol. 14, no. 5, pp. 547–555, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Pfeffer, J. M. Pfeffer, C. Steinberg, and P. Finn, “Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril,” Circulation, vol. 72, no. 2, pp. 406–412, 1985. View at Scopus
  6. C. Badea, E. Bucholz, L. Hedlund, H. Rockman, and G. Johnson, “Imaging methods for morphological and functional phenotyping of the rodent heart,” Toxicologic Pathology, vol. 34, no. 1, pp. 111–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Barkhausen, S. G. Ruehm, M. Goyen, T. Buck, G. Laub, and J. F. Debatin, “MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study,” Radiology, vol. 219, no. 1, pp. 264–269, 2001. View at Scopus
  8. L. A. Colby and B. J. Morenko, “Clinical considerations in rodent bioimaging,” Comparative Medicine, vol. 54, no. 6, pp. 623–630, 2004. View at Scopus
  9. P. Balakumar, A. P. Singh, and M. Singh, “Rodent models of heart failure,” Journal of Pharmacological and Toxicological Methods, vol. 56, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. R. D. Patten and M. R. Hall-Porter, “Small animal models of heart failure development of novel therapies, past and present,” Circulation, vol. 2, no. 2, pp. 138–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Driehuys, J. Nouls, A. Badea et al., “Small animal imaging with magnetic resonance microscopy,” ILAR Journal, vol. 49, no. 1, pp. 35–53, 2008. View at Scopus
  12. J. E. Schneider, T. Lanz, H. Barnes et al., “Ultra-fast and accurate assessment of cardiac function in rats using accelerated MRI at 9.4 Tesla,” Magnetic Resonance in Medicine, vol. 59, no. 3, pp. 636–641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Chapon, J. S. Jackson, E. O. Aboagye, A. H. Herlihy, W. A. Jones, and K. K. Bhakoo, “An in vivo multimodal imaging study using MRI and pet of stem cell transplantation after myocardial infarction in rats,” Molecular Imaging and Biology, vol. 11, no. 1, pp. 31–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. B. Schelbert, L. Y. Hsu, S. A. Anderson et al., “Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart,” Circulation, vol. 3, no. 6, pp. 743–752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. J. Ross, Z. Yang, S. S. Berr et al., “Serial MRI evaluation of cardiac structure and function in mice after reperfused myocardial infarction,” Magnetic Resonance in Medicine, vol. 47, no. 6, pp. 1158–1168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Yang, S. S. Berr, W. D. Gilson, M. C. Toufektsian, and B. A. French, “Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction,” Circulation, vol. 109, no. 9, pp. 1161–1167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. N. Price, K. K. Cheung, J. O. Cleary, A. E. Campbell, J. Riegler, and M. F. Lythgoe, “Cardiovascular magnetic resonance imaging in experimental models,” The Open Cardiovascular Medicine Journal, vol. 4, pp. 278–292, 2010. View at Publisher · View at Google Scholar
  18. W. D. Gilson and D. L. Kraitchman, “Cardiac magnetic resonance imaging in small rodents using clinical 1.5–T and 3.0–T scanners,” Methods, vol. 43, no. 1, pp. 35–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Franco, G. D. Thomas, B. Giroir et al., “Magnetic resonance imaging and invasive evaluation of development of heart failure in transgenic mice with myocardial expression of tumor necrosis factor-α,” Circulation, vol. 99, no. 3, pp. 448–454, 1999. View at Scopus
  20. F. Franco, S. K. Dubois, R. M. Peshock, and R. V. Shohet, “Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy,” American Journal of Physiology, vol. 274, no. 2, pp. H679–H683, 1998. View at Scopus
  21. S. Dobner, D. Bezuidenhout, P. Govender, P. Zilla, and N. Davies, “A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling,” Journal of Cardiac Failure, vol. 15, no. 7, pp. 629–636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Takagawa, Y. Zhang, M. L. Wong et al., “Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches,” Journal of Applied Physiology, vol. 102, no. 6, pp. 2104–2111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Riegler, K. K. Cheung, Y. F. Man, J. O. Cleary, A. N. Price, and M. F. Lythgoe, “Comparison of segmentation methods for MRI measurement of cardiac function in rats,” Journal of Magnetic Resonance Imaging, vol. 32, no. 4, pp. 869–877, 2010. View at Scopus
  24. E. Heiberg, L. Wigstrom, M. Carlsson, A. Bolger, and M. Karlsson, “Time resolved three-dimensional automated segmentation of the left ventricle,” IEEE, pp. 599–602, 2005.
  25. C. E. Barbier, L. Johansson, L. Lind, H. Ahlström, and T. Bjerner, “The exactness of left ventricular segmentation in cine magnetic resonance imaging and its impact on systolic function values,” Acta Radiologica, vol. 48, no. 3, pp. 285–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Ojha, S. Roy, J. Radtke et al., “Characterization of the structural and functional changes in the myocardium following focal ischemia-reperfusion injury,” American Journal of Physiology, vol. 294, no. 6, pp. H2435–H2443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The Lancet, vol. 1, no. 8476, pp. 307–310, 1986. View at Scopus
  28. B. M. A. Delattre, V. Braunersreuther, J. N. Hyacinthe, L. A. Crowe, F. Mach, and J. P. Vallée, “Myocardial infarction quantification with Manganese-Enhanced MRI (MEMRI) in mice using a 3–T clinical scanner,” NMR in Biomedicine, vol. 23, no. 5, pp. 503–513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. R. Jones, J. F. Mata, Z. Yang, B. A. French, and J. N. Oshinski, “Left ventricular remodeling subsequent to reperfused myocardial infarction: evaluation of a rat model using cardiac magnetic resonance imaging,” Journal of Cardiovascular Magnetic Resonance, vol. 4, no. 3, pp. 317–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Protti, A. Sirker, A. M. Shah, and R. Botnar, “Late gadolinium enhancement of acute myocardial infarction in mice at 7–T: cine-FLASH versus inversion recovery,” Journal of Magnetic Resonance Imaging, vol. 32, no. 4, pp. 878–886, 2010. View at Scopus
  31. J. Ruff, F. Wiesmann, K. H. Hiller et al., “Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse,” Magnetic Resonance in Medicine, vol. 40, no. 1, pp. 43–48, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. S. E. Slawson, B. B. Roman, D. S. Williams, and A. P. Koretsky, “Cardiac MRI of the normal and hypertrophied mouse heart,” Magnetic Resonance in Medicine, vol. 39, no. 6, pp. 980–987, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Thomas, V. A. Ferrari, M. Janik et al., “Quantitative assessment of regional myocardial function in a rat model of myocardial infarction using tagged MRI,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 17, no. 3–6, pp. 179–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Nahrendorf, K. H. Hiller, A. Greiser et al., “Chronic coronary artery stenosis induces impaired function of remote myocardium: MRI and spectroscopy study in rat,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 285, no. 6, pp. H2712–H2721, 2003. View at Scopus
  35. C. A. Carr, D. J. Stuckey, L. Tatton et al., “Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 295, no. 2, pp. H533–H542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. J. Stuckey, C. A. Carr, D. J. Tyler, and K. Clarke, “Cine-MRI versus two-dimensional echocardiography to measure in vivo left ventricular function in rat heart,” NMR in Biomedicine, vol. 21, no. 7, pp. 765–772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. R. J. M. Van Geuns, T. Baks, E. H. B. M. Gronenschild et al., “Automatic quantitative left ventricular analysis of cine MR images by using three-dimensional information for contour detection,” Radiology, vol. 240, no. 1, pp. 215–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. A. Young, B. R. Cowan, S. F. Thrupp, W. J. Hedley, and L. J. Dell'Italia, “Left ventricular mass and volume: fast calculation with guide-point modeling on MR images,” Radiology, vol. 216, no. 2, pp. 597–602, 2000. View at Scopus
  39. B. Sievers, S. Kirchberg, A. Bakan, U. Franken, and H. J. Trappe, “Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance,” Journal of Cardiovascular Magnetic Resonance, vol. 6, no. 1, pp. 9–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Vogel-Claussen, J. P. Finn, A. S. Gomes et al., “Left ventricular papillary muscle mass: relationship to left ventricular mass and volumes by magnetic resonance imaging,” Journal of Computer Assisted Tomography, vol. 30, no. 3, pp. 426–432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Wiesmann, J. Ruff, K. H. Hiller, E. Rommel, A. Haase, and S. Neubauer, “Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 278, no. 2, pp. H652–H657, 2000. View at Scopus
  42. E. Heijman, J. P. Aben, C. Penners et al., “Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images,” Journal of Magnetic Resonance Imaging, vol. 27, no. 1, pp. 86–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. A. Young, H. Barnes, D. Davison, S. Neubauer, and J. E. Schneider, “Fast left ventricular mass and volume assessment in mice with three-dimensional guide-point modeling,” Journal of Magnetic Resonance Imaging, vol. 30, no. 3, pp. 514–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Hori, M. Inoue, and S. Fukui, “Correlation of ejection fraction and infarct size estimated from the total CK released in patients with acute myocardial infarction,” British Heart Journal, vol. 41, no. 4, pp. 433–440, 1979. View at Scopus
  45. S. E. Litwin, S. E. Katz, J. P. Morgan, and P. S. Douglas, “Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat,” Circulation, vol. 89, no. 1, pp. 345–354, 1994. View at Scopus
  46. S. A. Rubin, M. C. Fishbein, and H. J. C. Swan, “Compensatory hypertrophy in the heart after myocardial infarction in the rat,” Journal of the American College of Cardiology, vol. 1, no. 6, pp. 1435–1441, 1983. View at Scopus
  47. S. M. G. S. John and N. Sharpe, “Left ventricular remodeling after myocardial infarction: pathophysiology and therapy,” Circulation, vol. 101, no. 25, pp. 2981–2988, 2000. View at Scopus
  48. J. P. M. Cleutjens, J. C. Kandala, E. Guarda, R. V. Guntaka, and K. T. Weber, “Regulation of collagen degradation in the rat myocardium after infarction,” Journal of Molecular and Cellular Cardiology, vol. 27, no. 6, pp. 1281–1292, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. B. A. French and C. M. Kramer, “Mechanisms of postinfarct left ventricular remodeling,” Drug Discovery Today, vol. 4, no. 3, pp. 185–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. C. S. Brau, L. W. Hedlund, and G. A. Johnson, “Cine magnetic resonance microscopy of the rat heart using cardiorespiratory-synchronous projection reconstruction,” Journal of Magnetic Resonance Imaging, vol. 20, no. 1, pp. 31–38, 2004. View at Publisher · View at Google Scholar · View at Scopus