About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 507294, 9 pages
http://dx.doi.org/10.1155/2012/507294
Research Article

Bioequivalence and Population Pharmacokinetic Modeling of Two Forms of Antibiotic, Cefuroxime Lysine and Cefuroxime Sodium, after Intravenous Infusion in Beagle Dogs

1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
2Department of Pharmacy, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100050, China

Received 22 January 2012; Accepted 14 May 2012

Academic Editor: Andre Van Wijnen

Copyright © 2012 Longshan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fiocchi, E. Calcinai, G. Beghi, and L. Terracciano, “Paediatric upper respiratory infections: the role of antibiotics,” International Journal of Immunopathology and Pharmacology, vol. 23, no. 1, pp. 56–60, 2010. View at Scopus
  2. A. Barbour, S. Schmidt, W. R. Rout, K. Ben-David, O. Burkhardt, and H. Derendorf, “Soft tissue penetration of cefuroxime determined by clinical microdialysis in morbidly obese patients undergoing abdominal surgery,” International Journal of Antimicrobial Agents, vol. 34, no. 3, pp. 231–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. Vazquez and E. Abalos, “Treatments for symptomatic urinary tract infections during pregnancy,” Cochrane Database of Systematic Reviews, vol. 19, Article ID CD002256, 2011. View at Scopus
  4. G. M. Salzmann, F. D. Naal, F. von Knoch et al., “Effects of cefuroxime on human osteoblasts in vitro,” Journal of Biomedical Materials Research A, vol. 82, no. 2, pp. 462–468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Abo El-Sooud, H. A. El-Banna, M. S. M. Hanafy, and A. Goudah, “Pharmacokinetics and intramuscular bioavailability of cefuroxime sodium in goats,” Research in Veterinary Science, vol. 69, no. 3, pp. 219–224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Benoni, L. Franco, A. Conforti, A. Totorizzo, and G. P. Velo, “Pharmacokinetics of cefuroxim and cefoxitin in experimental pleurisy in the rat,” Giornale Italiano di Chemioterapia, vol. 28, no. 1-2, pp. 33–39, 1981. View at Scopus
  7. R. K. Chaudhary, A. K. Srivastava, and S. Rampal, “Modification of the pharmacokinetics and dosage of cefuroxime by endotoxin-induced fever in buffalo calves,” Veterinary Research Communications, vol. 23, no. 6, pp. 361–368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. C. A. Knoderer, S. A. Saft, S. G. Walker et al., “Cefuroxime pharmacokinetics in pediatric cardiovascular surgery patients undergoing cardiopulmonary bypass,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 25, no. 3, pp. 425–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Bischoff, A. Beck, P. Frei, and G. Bischoff, “Pharmacokinetics of cefuroxime in traumatic wound secretion and antibacterial activity under vacuum therapy,” Journal of Chemotherapy, vol. 22, no. 2, pp. 92–97, 2010. View at Scopus
  10. L. S. Zhao, Y. L. Zhao, Q. Li, et al., “A fast, sensitive, and high throughput method for the determination of cefuroxime lysine in dog plasma by UPLC-MS/MS,” Talanta, vol. 89, pp. 84–90, 2012.
  11. J. W. Mandema, D. Verotta, and L. B. Sheiner, “Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects,” Journal of Pharmacokinetics and Biopharmaceutics, vol. 20, no. 5, pp. 511–528, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. S. L. Beal, A. J. Boeckman, and L. B. Sheiner, NONMEM: User’s Guides, Universtiy of California at San Friacisco, San Francisco Calif, USA, 1988–1992.
  13. A. M. Nevill, S. Bate, and R. L. Holder, “Modeling physiological and anthropometric variables known to vary with body size and other confounding variables,” American Journal of Physical Anthropology, vol. 41, pp. 141–153, 2005. View at Scopus
  14. P. Colucci, J. Turgeon, and M. P. Ducharme, “How critical is the duration of the sampling scheme for the determination of half-life, characterization of exposure and assessment of bioequivalence?” Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 2, pp. 217–226, 2011. View at Scopus
  15. J. Powers, “Statistical analysis of pharmacokinetics data,” Journal of Veterinary Pharmacology and Therapeutics, vol. 13, pp. 113–120, 1990.
  16. K. Yamaoka, T. Nakagawa, and T. Uno, “Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetics equations,” Journal of Pharmacokinetics and Biopharmaceutics, vol. 6, no. 2, pp. 165–175, 1978. View at Scopus
  17. S. Wamberg, N. C. F. Sandgaard, and P. Bie, “Simultaneous determination of total body water and plasma volume in conscious dogs by the indicator dilution principle,” Journal of Nutrition, vol. 132, no. 6, pp. 1711s–1713s, 2002. View at Scopus
  18. P. Partani, S. Gurule, A. Khuroo, T. Monif, and S. Bhardwaj, “Liquid chromatography/electrospray tandem mass spectrometry method for the determination of cefuroxime in human plasma: application to a pharmacokinetic study,” Journal of Chromatography B, vol. 878, no. 3-4, pp. 428–434, 2010. View at Publisher · View at Google Scholar · View at Scopus