About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 520380, 9 pages
http://dx.doi.org/10.1155/2012/520380
Research Article

Flagellar Motility of Trypanosoma cruzi Epimastigotes

1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, 07000 México, DF, Mexico
2Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 México, DF, Mexico
3Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, 68120 Oaxaca, Mexico
4Unidad Monterrey, Centro de Investigación y Estudios Avanzados del IPN, 66600 Monterrey, Mexico
5FES Iztacala, UBIMED, UNAM, Estodo de México, 54090 México, DF, Mexico

Received 15 July 2011; Revised 28 September 2011; Accepted 29 September 2011

Academic Editor: Abhay R. Satoskar

Copyright © 2012 G. Ballesteros-Rodea et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Barrett, R. J. Burchmore, A. Stich et al., “The trypanosomiases,” The Lancet, vol. 362, no. 9394, pp. 1469–1480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. W. De Souza, “Basic cell biology of Trypanosoma cruzi,” Current Pharmaceutical Design, vol. 8, no. 4, pp. 269–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Gull, “Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies,” Current Opinion in Microbiology, vol. 6, no. 4, pp. 365–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Porto-Carreiro, M. Attias, K. Miranda, W. De Souza, and N. Cunha-E-Silva, “Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes,” European Journal of Cell Biology, vol. 79, no. 11, pp. 858–869, 2000. View at Scopus
  5. G. M. Rocha, S. H. Seabra, K. R. de Miranda, N. Cunha-e-Silva, T. M. de Carvalho, and W. de Souza, “Attachment of flagellum to the cell body is important to the kinetics of transferrin uptake by Trypanosoma cruzi,” Parasitology International, vol. 59, no. 4, pp. 629–633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. J. Brokaw, “Flagellar movement: a sliding filament model,” Science, vol. 178, no. 4060, pp. 455–462, 1972. View at Scopus
  7. G. Piperno, K. Mead, and W. Shestak, “The inner dynein arms I2 interact with a “dynein regulatory complex” in Chlamydomonas flagella,” Journal of Cell Biology, vol. 118, no. 6, pp. 1455–1463, 1992. View at Scopus
  8. E. F. Smith and W. S. Sale, “Regulation of dynein-driven microtubule sliding by the radial spokes in flagella,” Science, vol. 257, no. 5076, pp. 1557–1559, 1992. View at Scopus
  9. P. Bastin, T. Sherwin, and K. Gull, “Paraflagellar rod is vital for trypanosome motility,” Nature, vol. 391, no. 6667, p. 548, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. K. S. Ralston and K. L. Hill, “The flagellum of Trypanosoma brucei: new tricks from an old dog,” International Journal for Parasitology, vol. 38, no. 8-9, pp. 869–884, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Maga and J. H. LeBowitz, “Unravelling the kinetoplastid paraflagellar rod,” Trends in Cell Biology, vol. 9, no. 10, pp. 409–413, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. M. H. Abdille, S. Y. Li, Y. Jia, X. Suo, and G. Mkoji, “Evidence for the existence of paraflagellar rod protein 2 (PFR2) gene in Trypanosoma evansi and its conservation among other kinetoplastid parasites,” Experimental Parasitology, vol. 118, no. 4, pp. 614–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Rusconi, M. Durand-Dubief, and P. Bastin, “Functional complementation of RNA interference mutants in trypanosomes,” BMC Biotechnology, vol. 5, article 6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Souto-Padron, T. U. de Carvalho, E. Chiari, and W. de Souza, “Further studies on the cell surface charge of Trypanosoma cruzi,” Acta Tropica, vol. 41, no. 3, pp. 215–225, 1984. View at Scopus
  15. L. Kohl, D. Robinson, and P. Bastin, “Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes,” The Embo Journal, vol. 22, no. 20, pp. 5336–5346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Tetley and K. Vickerman, “Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat,” Journal of Cell Science, vol. 74, pp. 1–19, 1985. View at Scopus
  17. D. R. Robinson and K. Gull, “Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle,” Nature, vol. 352, no. 6337, pp. 731–733, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. F. F. Moreira-Leite, T. Sherwin, L. Kohl, and K. Gull, “A trypanosome structure involved in transmitting cytoplasmic information during cell division,” Science, vol. 294, no. 5542, pp. 610–612, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Broadhead, H. R. Dawe, H. Farr et al., “Flagellar motility is required for the viability of the bloodstream trypanosome,” Nature, vol. 440, no. 7081, pp. 224–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Branche, L. Kohl, G. Toutirais, J. Buisson, J. Cosson, and P. Bastin, “Conserved and specific functions of axoneme components in trypanosome motility,” Journal of Cell Science, vol. 119, no. 16, pp. 3443–3455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Uppaluri, J. Nagler, E. Stellamanns et al., “Impact of microscopic motility on the swimming behavior of parasites: straighter Trypanosomes are more directional,” Plos Computational Biology, vol. 7, no. 6, Article ID e1002058, 2011. View at Publisher · View at Google Scholar
  22. C. Gadelha, B. Wickstead, and K. Gull, “Flagellar and ciliary beating in trypanosome motility,” Cell Motility and the Cytoskeleton, vol. 64, no. 8, pp. 629–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Berriman, E. Ghedin, C. Hertz-Fowler et al., “The genome of the African trypanosome Trypanosoma brucei,” Science, vol. 309, no. 5733, pp. 416–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. N. M. El-Sayed, P. J. Myler, G. Blandin et al., “Comparative genomics of trypanosomatid parasitic protozoa,” Science, vol. 309, no. 5733, pp. 404–435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. C. Ivens, C. S. Peacock, E. A. Worthey et al., “The genome of the kinetoplastid parasite, Leishmania major,” Science, vol. 309, no. 5733, pp. 436–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Bastin, T. J. Pullen, T. Sherwin, and K. Gull, “Protein transport and flagellum assembly dynamics revealed by analysis of the paralysed trypanosome mutant snl-1,” Journal of Cell Science, vol. 112, no. 21, pp. 3769–3777, 1999. View at Scopus
  27. N. R. Hutchings, J. E. Donelson, and K. L. Hill, “Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes,” Journal of Cell Biology, vol. 156, no. 5, pp. 867–877, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Woolley, C. Gadelha, and K. Gull, “Evidence for a sliding-resistance at the tip of the trypanosome flagellum,” Cell Motility and the Cytoskeleton, vol. 63, no. 12, pp. 741–746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. E. Holwill and J. L. McGregor, “Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti,” Journal of Experimental Biology, vol. 65, no. 1, pp. 229–242, 1976. View at Scopus
  30. F. F. Moreira-Leite, W. de Souza, and N. L. da Cunha-d-Silva, “Purification of the paraflagellar rod of the trypanosomatid Herpetomonas megaseliae and identification of some of its minor components,” Molecular and Biochemical Parasitology, vol. 104, no. 1, pp. 131–140, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Souza, “Structural organization of Trypanosoma cruzi,” Memorias do Instituto Oswaldo Cruz, vol. 104, supplement 1, pp. 89–100, 2009. View at Scopus
  32. F. A. Samatey, K. Imada, S. Nagashima et al., “Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling,” Nature, vol. 410, no. 6826, pp. 331–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. U. W. Goodenough and J. E. Heuser, “Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella,” Journal of Cell Biology, vol. 100, no. 6, pp. 2008–2018, 1985. View at Scopus
  34. D. Nicastro, C. Schwartz, J. Pierson, R. Gaudette, M. E. Porter, and J. R. McIntosh, “The molecular architecture of axonemes revealed by cryoelectron tomography,” Science, vol. 313, no. 5789, pp. 944–948, 2006. View at Publisher · View at Google Scholar · View at Scopus