About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 524019, 10 pages
http://dx.doi.org/10.1155/2012/524019
Research Article

Antioxidant, Antinociceptive, and Anti-Inflammatory Effects of Carotenoids Extracted from Dried Pepper (Capsicum annuum L.)

1Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 Mexico City, DF, Mexico
2Departamento de Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Esquina Paseo Tollocan, 50120 Toluca, MEX, Mexico
3Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Avenida Wilfrido Massieu s/n, Esquina Manuel L. Stampa, 07738 Mexico City, DF, Mexico
4División Coordinación de Operación de Redes de Investigación, Edificio Secretaría Académica, Instituto Politécnico Nacional, Avenida Miguel Othón de Mendizábal s/n, 07738 Mexico City, DF, Mexico

Received 6 July 2012; Accepted 21 August 2012

Academic Editor: Anton M. Jetten

Copyright © 2012 Marcela Hernández-Ortega et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. T. Pennington and R. A. Fisher, “Food component profiles for fruit and vegetable subgroups,” Journal of Food Composition and Analysis, vol. 23, no. 5, pp. 411–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. V. M. Dembitsky, S. Poovarodom, H. Leontowicz et al., “The multiple nutrition properties of some exotic fruits: biological activity and active metabolites,” Food Research International, vol. 44, no. 7, pp. 1671–1701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. F. Ayala-Zavala, V. Vega-Vega, C. Rosas-Domínguez et al., “Agro-industrial potential of exotic fruit byproducts as a source of food additives,” Food Research International, vol. 44, no. 7, pp. 1866–1874, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. G. González-Aguilar, R. M. Robles-Sánchez, M. A. Martínez-Téllez, G. I. Olivas, E. Alvarez-Parrilla, and L. A. De La Rosa, “Bioactive compounds in fruits: health benefits and effect of storage conditions,” Stewart Postharvest Review, vol. 4, no. 3, article 8, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Liu, J. Shi, A. Colina Ibarra, Y. Kakuda, and S. Jun Xue, “The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH free radical,” LWT—Food Science and Technology, vol. 41, no. 7, pp. 1344–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Müller, K. Fröhlich, and V. Böhm, “Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay,” Food Chemistry, vol. 129, no. 1, pp. 139–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Zimmer, B. Leonardi, D. Miron, E. Schapoval, J. R. Oliveira, and G. Gosmann, “Antioxidant and anti-inflammatory properties of Capsicum baccatum: from traditional use to scientific approach,” Journal of Ethnopharmacology, vol. 139, no. 1, pp. 228–233, 2012.
  8. F. Menichini, R. Tundis, M. Bonesi et al., “The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero,” Food Chemistry, vol. 114, no. 2, pp. 553–560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Bown, ,Encyclopedia of Herbs and Their Uses, Kindersley Dorling, London, Herb Society of America, London, UK, 2001.
  10. M. K. Meghvansi, S. Siddiqui, M. H. Khan et al., “Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications,” Journal of Ethnopharmacology, vol. 132, no. 1, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. E. V. Wyk and M. Wink, Medicinal Plants of the World: An Illustrated Scientific Guide to Important Medicinal Plants and Their Uses, Timber Press, Portland, Ore, USA, 2004.
  12. J. S. Park, J. H. Chyun, Y. K. Kim, L. L. Line, and B. P. Chew, “Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans,” Nutrition and Metabolism, vol. 7, no. 1, article 18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Ornelas-Paz, L. A. Cira-Chávez, A. A. Gardea-Béjar et al., “Effect of heat treatment on the content of some bioactive compounds and free radical-scavenging activity in pungent and non-pungent peppers,” Food Research International. In press. View at Publisher · View at Google Scholar
  14. P. Di Mascio, S. Kaiser, and H. Sies, “Lycopene as the most efficient biological carotenoid singlet oxygen quencher,” Archives of Biochemistry and Biophysics, vol. 274, no. 2, pp. 532–538, 1989. View at Scopus
  15. N. I. Krinsky and K. J. Yeum, “Carotenoid-radical interactions,” Biochemical and Biophysical Research Communications, vol. 305, no. 3, pp. 754–760, 2003.
  16. W. Stahl and H. Sies, “Antioxidant activity of carotenoids,” Molecular Aspects of Medicine, vol. 24, no. 6, pp. 345–351, 2003.
  17. Y. J. Kim, Y. A. E. Kim, and T. Yokozawa, “Protection against oxidative stress, inflammation, and apoptosis of high-glucose-exposed proximal tubular epithelial cells by astaxanthin,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 8793–8797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Salvemini, J. W. Little, T. Doyle, and W. L. Neumann, “Roles of reactive oxygen and nitrogen species in pain,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 951–966, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. K. Kim, S. K. Park, J. L. Zhou et al., “Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain,” Pain, vol. 111, no. 1-2, pp. 116–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Janes, W. L. Neumann, and D. Salvemini, “Anti-superoxide and anti-peroxynitrite strategies in pain suppression,” Biochimica et Biophysica Acta, vol. 1822, no. 5, pp. 815–821, 2012.
  21. J. M. Chung, “The role of reactive oxygen species (ROS) in persistent pain,” Molecular Interventions, vol. 4, no. 5, pp. 248–250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Loeser and R. D. Treede, “The Kyoto protocol of IASP Basic Pain Terminology,” Pain, vol. 137, no. 3, pp. 473–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Cervero and J. Laird, “One pain or many pains?” Physiology, vol. 6, no. 6, pp. 268–273, 1991.
  24. R. B. Fillingim, C. D. King, M. C. Ribeiro-Dasilva, B. Rahim-Williams, and J. L. Riley, “Sex, gender, and pain: a review of recent clinical and experimental findings,” Journal of Pain, vol. 10, no. 5, pp. 447–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Melnikova, “Pain market,” Nature Reviews Drug Discovery, vol. 9, no. 8, pp. 589–590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Barrot, “Tests and models of nociception and pain in rodents,” Neuroscience, vol. 211, no. 211, pp. 39–50, 2012.
  27. J. S. Mogil, K. D. Davis, and S. W. Derbyshire, “The necessity of animal models in pain research,” Pain, vol. 151, no. 1, pp. 12–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Loganayaki, P. Siddhuraju, and S. Manian, “Antioxidant, anti-inflammatory and anti-nociceptive effects of Ammannia baccifera L., a folklore medicinal plant,” Journal of Ethnopharmacology, vol. 140, no. 2, pp. 230–233, 2012.
  29. G. G. Garcia, H. F. Miranda, V. Noriega et al., “Antinociception induced by atorvastatin in different pain models,” Pharmacology Biochemistry and Behavior, vol. 100, no. 1, pp. 125–129, 2011. View at Publisher · View at Google Scholar
  30. B. S. Ashok Kumar, K. Lakshman, K. N. Jayaveera et al., “Pain management in mice using methanol extracts of three plants belongs to family Amaranthaceae,” Asian Pacific Journal of Tropical Medicine, vol. 3, no. 7, pp. 527–530, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. A. Mothana, M. S. Al-Said, A. J. Al-Rehaily et al., “Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. ex Sprague,” Food Chemistry, vol. 130, no. 2, pp. 344–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Zhao, Y. Zhao, and K. Wang, “Antinociceptive and free radical scavenging activities of alkaloids isolated from Lindera angustifolia Chen,” Journal of Ethnopharmacology, vol. 106, no. 3, pp. 408–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. N. W. Penn, “Potentiation of morphine analgesic action in mice by β-carotene,” European Journal of Pharmacology, vol. 284, no. 1-2, pp. 191–193, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kuhad, S. Sharma, and K. Chopra, “Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain,” European Journal of Pain, vol. 12, no. 5, pp. 624–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. D. D. Haines, B. Varga, I. Bak et al., “Summative interaction between astaxanthin, Ginkgo biloba extract (EGb761) and vitamin C in Suppression of respiratory inflammation: a comparison with ibuprofen,” Phytotherapy Research, vol. 25, no. 1, pp. 128–136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Hazewindus, G. R. M. M. Haenen, A. R. Weseler, and A. Bast, “The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and α-tocopherol,” Food Chemistry, vol. 132, no. 2, pp. 954–958, 2012.
  37. D. B. Rodriguez-Amaya, A Guide to Carotenoid, ILSI Press, Washington, DC, USA, 2001.
  38. D. Hornero-Méndez and M. I. Minguez-Mosquera, “Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and red pepper oleoresins,” Journal of Agricultural and Food Chemistry, vol. 49, no. 8, pp. 3584–3588, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Zeb and M. Murkovic, “Thin-layer chromatographic analysis of carotenoids in plant and animal samples,” Journal of Planar Chromatography, vol. 23, no. 2, pp. 94–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Guerra-vargas, M. E. Jaramillo-flores, L. Dorantes-alvarez, and H. Hernández-sánchez, “Carotenoid retention in canned pickled jalapeño peppers and carrots as affected by sodium chloride, acetic acid, and pasteurization,” Journal of Food Science, vol. 66, no. 4, pp. 620–626, 2001. View at Scopus
  41. NOM-062-ZOO-1999, “Especificaciones Técnicas para la produccion, cuidado y uso de los animales de laboratorio,” Dirección General de Normas, Direccion general de normas, Alcance, México, 1999.
  42. OECD, “Acute oral toxicity—acute toxic class method,” Tech. Rep. 423, OECD Publishing, 2001.
  43. E. A. Asongalem, H. S. Foyet, S. Ekobo, T. Dimo, and P. Kamtchouing, “Antiinflammatory, lack of central analgesia and antipyretic properties of Acanthus montanus (Ness) T. Anderson,” Journal of Ethnopharmacology, vol. 95, no. 1, pp. 63–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Mekonnen, K. Urga, and E. Engidawork, “Evaluation of the diuretic and analgesic activities of the rhizomes of Rumex abyssinicus Jacq in mice,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 433–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Marroquin-Segura, M. Flores-Pimentel, R. Carreón-Sánchez et al., “The effect of the aqueous extract of Helietta parvifolia A. Gray (Rutaceae) stem bark on carrageenan-induced paw oedema and granuloma tissue formation in mice,” Journal of Ethnopharmacology, vol. 124, no. 3, pp. 639–641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. O. A. Olajide, S. O. Awe, J. M. Makinde et al., “Studies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem bark,” Journal of Ethnopharmacology, vol. 71, no. 1-2, pp. 179–186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. M. M. Wall, C. A. Waddell, and P. W. Bosland, “Variation in β-carotene and total carotenoid content in fruits of Capsicum,” HortScience, vol. 36, no. 4, pp. 746–749, 2001. View at Scopus
  48. D. Hervert-Hernández, S. G. Sáyago-Ayerdi, and I. Goñi, “Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility,” Journal of Agricultural and Food Chemistry, vol. 58, no. 6, pp. 3399–3406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Müller, “Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection,” Zeitschrift für Lebensmitteluntersuchung und-Forschung A, vol. 204, no. 2, pp. 88–94, 1997. View at Scopus
  50. A. Mortensen, L. H. Skibsted, J. Sampson, C. Rice-Evans, and S. A. Everett, “Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants,” FEBS Letters, vol. 418, no. 1-2, pp. 91–97, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. N. E. Polyakov, A. I. Kruppa, T. V. Leshina, T. A. Konovalova, and L. D. Kispert, “Carotenoids as antioxidants: spin trapping EPR and optical study,” Free Radical Biology and Medicine, vol. 31, no. 1, pp. 43–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. A. J. Young and G. M. Lowe, “Antioxidant and prooxidant properties of carotenoids,” Archives of Biochemistry and Biophysics, vol. 385, no. 1, pp. 20–27, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. V. Böhm, N. L. Puspitasari-Nienaber, M. G. Ferruzzi, and S. J. Schwartz, “Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin,” Journal of Agricultural and Food Chemistry, vol. 50, no. 1, pp. 221–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. N. J. Miller, J. Sampson, L. P. Candeias, P. M. Bramley, and C. A. Rice-Evans, “Antioxidant activities of carotenes and xanthophylls,” FEBS Letters, vol. 384, no. 3, pp. 240–242, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Zanfini, G. Corbini, C. La Rosa, and E. Dreassi, “Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and α-tocopherol in synthetic mixtures,” LWT—Food Science and Technology, vol. 43, no. 1, pp. 67–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. L. H. Skibsted, “Carotenoids in antioxidant networks. Colorants or radical scavengers,” Journal of Agricultural and Food Chemistry, vol. 60, no. 10, pp. 2409–2417, 2012. View at Publisher · View at Google Scholar
  57. Z. Z. Zhu, K. J. Ma, X. Ran et al., “Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum,” Journal of Ethnopharmacology, vol. 133, no. 3, pp. 1126–1131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Roome, A. Dar, S. Naqvi, and M. I. Choudhary, “Evaluation of antinociceptive effect of Aegiceras corniculatum stems extracts and its possible mechanism of action in rodents,” Journal of Ethnopharmacology, vol. 135, no. 2, pp. 351–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. H. Huang, B. S. Wang, C. S. Chiu et al., “Antioxidant, antinociceptive, and anti-inflammatory activities of Xanthii Fructus extract,” Journal of Ethnopharmacology, vol. 135, no. 2, pp. 545–552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. P. S. V. Satyanarayana, N. K. Jain, A. Singh, and S. K. Kulkarni, “Isobolographic analysis of interaction between cyclooxygenase inhibitors and tramadol in acetic acid-induced writhing in mice,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 4, pp. 641–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Matsumoto, H. Naraba, A. Ueno et al., “Induction of cyclooxygenase-2 causes an enhancement of writhing response in mice,” European Journal of Pharmacology, vol. 352, no. 1, pp. 47–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Srinivasan, S. Muruganandan, J. Lal et al., “Antinociceptive and antipyretic activities of Pongamia pinnata leaves,” Phytotherapy Research, vol. 17, no. 3, pp. 259–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. R. A. A. Mothana, M. S. Al-Said, A. J. Al-Rehaily et al., “Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. ex Sprague,” Food Chemistry, vol. 130, no. 2, pp. 344–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. G. S. Taïwe, E. N. Bum, E. Talla et al., “Evaluation of antinociceptive effects of Crassocephalum bauchiense Hutch (Asteraceae) leaf extract in rodents,” Journal of Ethnopharmacology, vol. 141, no. 1, pp. 234–241, 2012.
  65. V. García-Mediavilla, I. Crespo, P. S. Collado et al., “The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells,” European Journal of Pharmacology, vol. 557, no. 2-3, pp. 221–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Sharififar, G. Dehghn-Nudeh, and M. Mirtajaldini, “Major flavonoids with antioxidant activity from Teucrium polium L.,” Food Chemistry, vol. 112, no. 4, pp. 885–888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. R. González, I. Ballester, R. López-Posadas et al., “Effects of flavonoids and other polyphenols on inflammation,” Critical Reviews in Food Science and Nutrition, vol. 51, no. 4, pp. 331–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. R. A. A. Mothana, S. S. Hasson, W. Schultze, A. Mowitz, and U. Lindequist, “Phytochemical composition and in vitro antimicrobial and antioxidant activities of essential oils of three endemic Soqotraen Boswellia species,” Food Chemistry, vol. 126, no. 3, pp. 1149–1154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. H. P. T. Ammon, “Boswellic acids in chronic inflammatory diseases,” Planta Medica, vol. 72, no. 12, pp. 1100–1116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Hosseinzadeh and H. M. Younesi, “Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice,” BMC Pharmacology, vol. 2, no. 1, article 7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Basu and A. K. N. Chaudhuri, “Preliminary studies on the antiinflammatory and analgesic activities of Calotropis procera root extract,” Journal of Ethnopharmacology, vol. 31, no. 3, pp. 319–324, 1991. View at Scopus
  72. P. Antonisamy and S. Ignacimuthu, “Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum,” Phytomedicine, vol. 17, no. 3-4, pp. 300–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Han, H. L. Li, Q. Y. Zhang et al., “Bioactivity-guided fractionation for anti-inflammatory and analgesic properties and constituents of Xanthium strumarium L.,” Phytomedicine, vol. 14, no. 12, pp. 825–829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Spiller, M. K. Alves, S. M. Vieira et al., “Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation,” Journal of Pharmacy and Pharmacology, vol. 60, no. 4, pp. 473–478, 2008. View at Publisher · View at Google Scholar · View at Scopus