Review Article

Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

Table 2

Metabolic engineering of stilbene synthase in plants, and resulting effects on stilbene levels, resistance to pathogens, and antioxidant activities.

Plant/speciesIntroduced gene(s)PromoterProduced stilbene(s)Stilbene quantity (mg/kg of FW)Biological activityReferences

Tobacco (Nicotiana tabacum L.)Arachis hypogea STSStress-induced promoterResveratrol[100]
Grapevine Vst1 and Vst2Stress responsive pVst1Resveratrol400Resistance to Botrytis cinerea [125]
Chimeric STS geneConstitutive CaMV 35SResveratrol50 to 290Altered flower morphology, male sterility [152]
Rice (Oryza sativa L.)Grapevine Vst1Stress responsive pVst1Resistance to Pyricularia oryzae ?[126]
Wheat (Triticum aestivum L.)Grapevine Vst1Combination pVst1 +35S enhancerResistance to Botrytis cinerea [127, 129]
Chimeric STS geneMaize ubiquitin promoterResveratrol2[128]
Grapevine Vst1 and Vst2 Combination pVst1 +35S enhancerUnknown derivative stilbene compounds35 to 190Resistance to Puccinia recondita and Septoria nodorum [130]
Barley (Hordeum vulgare L.)Grapevine Vst1Combination pVst1 +35S enhancerResistance to Botrytis cinerea [127]
Alfalfa (Medicago sativa L.)Arachis hypogea STS gene (AhRS) Constitutive CaMV 35SPiceid0.5 to 20Resistance to Phoma medicaginis [131]
Arabidopsis thaliana L.Sorghum SbSTS1Constitutive CaMV 35SPiceid584[106, 148]
Kiwi (Actinidia deliciosa)pSV25Constitutive CaMV 35SPiceid20 to 182No resistance to Botrytis cinerea [132]
Grapevine (Vitis vinifera L.)Grapevine Vst1Fungus inducible ms PR 10.1ResveratrolIn vitro resistance to Botrytis cinerea [133]
Vitis pseudoreticulata STS Constitutive CaMV 35SResveratrol2.586Not determined[134]
Apple (Malus domestica)Grapevine Vst1Stress responsive pVst1Unknown resveratrol-glycoside[135]
Grapevine Vst1Stress responsive pVst1Piceid3 to 7 for non-UV-irradiated fruit and 23 to 62 for UV-irradiated fruitNo influence on other phenolic compounds[136]
Tomato (Lycopersicon esculentum Mill.)Grapevine Vst1 and Vst2 Stress responsive pVst1ResveratrolResistance to Phytophthora infestans No resistance to Botrytis cinerea and Alternaria solani [143]
Grapevine StSyConstitutive pCaMV 35SResveratrol and piceid4 to 53Antioxidant primary metabolism and increase in total antioxidant activity[144]
Grapevine StSyConstitutive pCaMV 35SResveratrol and piceid0.1 to 1.2Enhancement of natural antiradical properties[145]
Grapevine StSyConstitutive pCaMV 35SResveratrol and piceid0.42 to 126 depending on the stage of ripening and fruit samplesDifferences in rutin, naringenin, and chlorogenic acid contents[146]
Grapevine StSyFruit-specific promoter TomLoxBResveratrol and piceidIncreases in total antioxidant capability and ascorbic acid content[147]
Rehmannia glutinosa Libosch.Arachis hypogea AhRS3Constitutive pCaMV 35SResveratrol and piceid22 to 116 up to 650 with stress treatmentAntioxidant capabilities Resistance to Fusarium oxysporum [142]
Lettuce (Lactuca sativa L.)Parthenocissus henryanaSTSConstitutive pCaMV 35SResveratrol56.4Effect on Hela cell morphology[101]
Pea (Pisum. sativum L.)Grapevine Vst1Stress responsive pVst1Occurrence of two resveratrol-glucoside compounds0.53 to 5.2[149]
White poplar (Populus alba L.)Grapevine StSyConstitutive pCaMV 35SPiceid309 to 615No in vitro resistance to Melampsora pulcherrima [137, 139]
Papaya (Carica papaya L.)Grapevine Vst1Stress responsive pVst1Resveratrol glucoside54Resistance to Phytophthora palmivora [138]
Oilseed rape (Brassica napus L.)Grapevine Vst1Tissue specific p-napResveratrol glucoside361 to 616Food quality improvement: high piceid rate content and reduction of sinapate esters[140]
Hop (Humulus lupulus L.)Grapevine Vst1Constitutive pCaMV 35SPiceid, unknown stilbene astringin, resveratrol490 to 560Higher amounts of flavonoids and acids[150]