About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 597637, 5 pages
http://dx.doi.org/10.1155/2012/597637
Research Article

The Effect of Bradykinin B2 Receptor Polymorphisms on the Susceptibility and Severity of Osteoarthritis in a Chinese Cohort

Department of Orthopedics Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China

Received 13 April 2012; Accepted 12 June 2012

Academic Editor: Thomas Liehr

Copyright © 2012 Shuo Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Forestier, A. Francon, V. Briole, C. Genty, X. Chevalier, and P. Richette, “Prevalence of generalized osteoarthritis in a population with knee osteoarthritis,” Joint Bone Spine, vol. 78, no. 3, pp. 275–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Busija, L. Bridgett, S. R. M. Williams, et al., “Osteoarthritis,” Best Practice & Research Clinical Rheumatology, vol. 24, no. 6, pp. 757–768, 2010.
  3. P. de Grandmont, “Osteoarthrosis/osteoarthritis in the temporomandibular joints,” The International Journal of Prosthodontics, vol. 22, no. 5, pp. 530–532, 2009. View at Scopus
  4. W. E. Horton Jr., P. Bennion, and L. Yang, “Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis,” Journal of Musculoskeletal Neuronal Interactions, vol. 6, no. 4, pp. 379–381, 2006. View at Scopus
  5. J. Pang, Y. L. Cao, and Y. Y. Shi, “Subchondral bone in osteoarthritis: a review,” Zhongguo Gu Shang, vol. 24, no. 8, pp. 702–704, 2011.
  6. S. Esser and A. Bailey, “Effects of exercise and physical activity on knee osteoarthritis,” Current Pain and Headache Reports, vol. 15, no. 6, pp. 423–430, 2011. View at Publisher · View at Google Scholar
  7. J. Y. Bae, K. S. Park, J. K. Seon, et al., “Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis,” Medical and Biological Engineering and Computing, vol. 50, no. 1, pp. 53–60, 2012. View at Publisher · View at Google Scholar
  8. D. D. Anderson, J. L. Marsh, and T. D. Brown, “The pathomechanical etiology of post-traumatic osteoarthritis following intraarticular fractures,” The Iowa Orthopaedic Journal, vol. 31, pp. 1–20, 2011.
  9. L. Michou, “Genetics of digital osteoarthritis,” Joint Bone Spine, vol. 78, no. 4, pp. 347–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. Lee, M.-J. Kim, S.-J. Kee, et al., “Association study of the candidate gene for knee osteoarthritis in Koreans,” Rheumatology International. In press.
  11. S. Ikegawa, “Recent advance in the genomic study for osteoarthritis,” Clinical Calcium, vol. 21, no. 6, pp. 826–830, 2011.
  12. M. B. Goldring and M. Otero, “Inflammation in osteoarthritis,” Current Opinion in Rheumatology, vol. 23, no. 5, pp. 471–478, 2011. View at Publisher · View at Google Scholar
  13. S. B. Abramson, “Inflammation in osteoarthritis,” The Journal of Rheumatology, vol. 70, pp. 70–76, 2004. View at Scopus
  14. M. J. Benito, D. J. Veale, O. FitzGerald, W. B. van den Berg, and B. Bresnihan, “Synovial tissue inflammation in early and late osteoarthritis,” Annals of the Rheumatic Diseases, vol. 64, no. 9, pp. 1263–1267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Dray and M. Perkins, “Bradykinin and inflammatory pain,” Trends in Neurosciences, vol. 16, no. 3, pp. 99–104, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. A. B. Brechter and U. H. Lerner, “Bradykinin potentiates cytokine-induced prostaglandin biosynthesis in osteoblasts by enhanced expression of cyclooxygenase 2, resulting in increased RANKL expression,” Arthritis and Rheumatism, vol. 56, no. 3, pp. 910–923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Bouillet, I. Boccon-Gibod, and C. Massot, “Bradykinin mediated angioedema,” Revue de Medecine Interne, vol. 32, no. 4, pp. 225–231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Meini, P. Cucchi, C. Catalani, F. Bellucci, S. Giuliani, and C. A. Maggi, “Bradykinin and B2 receptor antagonism in rat and human articular chondrocytes,” British Journal of Pharmacology, vol. 162, no. 3, pp. 611–622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Warde, “Osteoarthritis: local antagonism of endothelin-1 and bradykinin receptors improves OA pain and joint morphology in rats,” Nature Reviews Rheumatology, vol. 7, no. 7, p. 375, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Y. Chen, D. F. Emerich, R. T. Bartus, et al., “B2 bradykinin receptor immunoreactivity in rat brain,” The Journal of Comparative Neurology, vol. 427, no. 1, pp. 1–18, 2000.
  21. B. Cassim, S. Naidoo, R. Ramsaroop, and K. D. Bhoola, “Immunolocalization of bradykinin receptors on human synovial tissue,” Immunopharmacology, vol. 36, no. 2-3, pp. 121–125, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Bellucci, P. Cucchi, C. Catalani, S. Giuliani, S. Meini, and C. A. Maggi, “Novel effects mediated by bradykinin and pharmacological characterization of bradykinin B2 receptor antagonism in human synovial fibroblasts,” British Journal of Pharmacology, vol. 158, no. 8, pp. 1996–2004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Fallo, P. Mulatero, R. Vettor et al., “Bradykinin B2 receptor gene C-58T polymorphism and insulin resistance. A study on obese patients,” Hormone and Metabolic Research, vol. 36, no. 4, pp. 243–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Niu, Y. Qi, P. Gao, and D. Zhu, “A meta-analysis of the bradykinin B2 receptor gene—58C/T polymorphism with hypertension,” Clinica Chimica Acta, vol. 411, no. 5-6, pp. 324–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Fu, T. Katsuya, A. Matsuo et al., “Relationship of bradykinin B2 receptor gene polymorphism with essential hypertension and left ventricular hypertrophy,” Hypertension Research, vol. 27, no. 12, pp. 933–938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. J. Lee and J. C. R. Tsai, “Angiotensin-converting enzyme gene insertion/deletion, not bradykinin B2 receptor—58T/C gene polymorphism, associated with angiotensin-converting enzyme inhibitor-related cough in Chinese female patients with non-insulin-dependent diabetes mellitus,” Metabolism, vol. 50, no. 11, pp. 1346–1350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Altman, E. Asch, and D. Bloch, “Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee,” Arthritis and Rheumatism, vol. 29, no. 8, pp. 1039–1052, 1986. View at Scopus
  28. P. Wang, M. S. Koehle, and J. L. Rupert, “No association between alleles of the bradykinin receptor-B2 gene and acute mountain sickness,” Experimental Biology and Medicine, vol. 235, no. 6, pp. 737–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Meini and C. A. Maggi, “Knee osteoarthritis: a role for bradykinin?” Inflammation Research, vol. 57, no. 8, pp. 351–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Cambridge and S. D. Brain, “Kinin B2 and B1 receptor-mediated vasoactive effects in rabbit synovium,” Peptides, vol. 19, no. 3, pp. 569–576, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Taraseviciene-Stewart, R. Scerbavicius, J. M. Stewart et al., “Treatment of severe pulmonary hypertension: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy,” Peptides, vol. 26, no. 8, pp. 1292–1300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. R. Cockcroft, P. J. Chowienczyk, S. E. Brett, N. Bender, and J. M. Ritter, “Inhibition of bradykinin-induced vasodilation in human forearm vasculature by icatibant, a potent B2-receptor antagonist,” British Journal of Clinical Pharmacology, vol. 38, no. 4, pp. 317–321, 1994. View at Scopus
  33. J. X. Ma, D. Z. Wang, D. C. Ward et al., “Structure and chromosomal localization of the gene (BDKRB2) encoding human bradykinin B2 receptor,” Genomics, vol. 23, no. 2, pp. 362–369, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. S. J. Powell, G. Slynn, C. Thomas, B. Hopkins, I. Briggs, and A. Graham, “Human bradykinin B2 receptor: nucleotide sequence analysis and assignment to chromosome 14,” Genomics, vol. 15, no. 2, pp. 435–438, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Kammerer, A. Braun, N. Arnold, and A. A. Roscher, “The human bradykinin B2 receptor gene: full length cDNA, genomic organization and identification of the regulatory region,” Biochemical and Biophysical Research Communications, vol. 211, no. 1, pp. 226–233, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. S. S. Dhamrait, J. R. Payne, P. Li et al., “Variation in bradykinin receptor genes increases the cardiovascular risk associated with hypertension,” European Heart Journal, vol. 24, no. 18, pp. 1672–1680, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. T. P. Olson, R. P. Frantz, S. T. Turner, et al., “Gene variant of the bradykinin B2 receptor influences pulmonary arterial pressures in heart failure patients,” Clinical Medicine. Circulatory, Respiratory and Pulmonary Medicine, vol. 2009, no. 3, pp. 9–17, 2009.
  38. D. Brull, S. Dhamrait, S. Myerson et al., “Bradykinin B2BKR receptor polymorphism and left-ventricular growth response,” The Lancet, vol. 358, no. 9288, pp. 1155–1156, 2001. View at Publisher · View at Google Scholar · View at Scopus