About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 632329, 12 pages
http://dx.doi.org/10.1155/2012/632329
Review Article

Natural Killer Cell Regulation by MicroRNAs in Health and Disease

Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA

Received 10 August 2012; Accepted 12 September 2012

Academic Editor: Wolfgang Arthur Schulz

Copyright © 2012 Jeffrey W. Leong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. Yokoyama, S. Kim, and A. R. French, “The dynamic life of natural killer cells,” Annual Review of Immunology, vol. 22, no. 11, pp. 405–429, 2004. View at Publisher · View at Google Scholar
  2. L. L. Lanier, “Up on the tightrope: natural killer cell activation and inhibition,” Nature Immunology, vol. 9, no. 5, pp. 495–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. di Santo, “Natural killer cells: diversity in search of a niche,” Nature Immunology, vol. 9, no. 5, pp. 473–475, 2008. View at Publisher · View at Google Scholar
  4. M. A. Caligiuri, “Human natural killer cells,” Blood, vol. 112, no. 3, pp. 461–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. G. Freud and M. A. Caligiuri, “Human natural killer cell development,” Immunological Reviews, vol. 214, no. 1, pp. 56–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Colucci, M. A. Caligiuri, and J. P. di Santo, “What does it take to make a natural killer?” Nature Reviews Immunology, vol. 3, no. 5, pp. 413–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Chiossone, J. Chaix, N. Fuseri, C. Roth, E. Vivier, and T. Walzer, “Maturation of mouse NK cells is a 4-stage developmental program,” Blood, vol. 113, no. 22, pp. 5488–5496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, “Functions of natural killer cells,” Nature Immunology, vol. 9, no. 5, pp. 503–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. H. Jonsson and W. M. Yokoyama, “Chapter 2 natural killer cell tolerance. Licensing and other mechanisms,” Advances in Immunology, vol. 101, pp. 27–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. T. Joncker and D. H. Raulet, “Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells,” Immunological Reviews, vol. 224, no. 1, pp. 85–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. L. Lanier, “NK cell recognition,” Annual Review of Immunology, vol. 23, pp. 225–274, 2005. View at Publisher · View at Google Scholar
  12. Y. T. Bryceson and E. O. Long, “Line of attack: NK cell specificity and integration of signals,” Current Opinion in Immunology, vol. 20, no. 3, pp. 344–352, 2008. View at Publisher · View at Google Scholar
  13. S. H. Lee, T. Miyagi, and C. A. Biron, “Keeping NK cells in highly regulated antiviral warfare,” Trends in Immunology, vol. 28, no. 6, pp. 252–259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. A. Fehniger, S. F. Cai, X. Cao et al., “Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of Granzyme B and perforin mRNAs,” Immunity, vol. 26, no. 6, pp. 798–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Lucas, W. Schachterle, K. Oberle, P. Aichele, and A. Diefenbach, “Dendritic cells prime natural killer cells by trans-presenting interleukin 15,” Immunity, vol. 26, no. 4, pp. 503–517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Chaix, M. S. Tessmer, K. Hoebe et al., “Cutting edge: priming of NK cells by IL-18,” Journal of Immunology, vol. 181, no. 3, pp. 1627–1631, 2008. View at Scopus
  17. J. S. Orange, “Human natural killer cell deficiencies,” Current Opinion in Allergy and Clinical Immunology, vol. 6, no. 6, pp. 399–409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Orange and Z. K. Ballas, “Natural killer cells in human health and disease,” Clinical Immunology, vol. 118, no. 1, pp. 1–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. T. W. Kuijpers, P. A. Baars, C. Dantin, M. van den Burg, R. A. W. Van Lier, and E. Roosnek, “Human NK cells can control CMV infection in the absence of T cells,” Blood, vol. 112, no. 3, pp. 914–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. A. Biron and L. Brossay, “NK cells and NKT cells in innate defense against viral infections,” Current Opinion in Immunology, vol. 13, no. 4, pp. 458–464, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Vidal, S. I. Khakoo, and C. A. Biron, “Natural killer cell responses during viral infections: flexibility and conditioning of innate immunity by experience,” Current Opinion in Immunology, vol. 1, no. 6, pp. 497–512, 2011.
  22. S. S. Farag, T. A. Fehniger, L. Ruggeri, A. Velardi, and M. A. Caligiuri, “Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect,” Blood, vol. 100, no. 6, pp. 1935–1947, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. H. G. Ljunggren and K. J. Malmberg, “Prospects for the use of NK cells in immunotherapy of human cancer,” Nature Reviews Immunology, vol. 7, no. 5, pp. 329–339, 2007. View at Publisher · View at Google Scholar
  24. J. Wu and L. L. Lanier, “Natural killer cells and cancer,” Advances in Cancer Research, vol. 13, no. 7, pp. 731–736, 2010.
  25. A. Velardi, L. Ruggeri, A. Mancusi, F. Aversa, and F. T. Christiansen, “Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia,” Current Opinion in Immunology, vol. 21, no. 5, pp. 525–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. C. Hsu and B. Dupont, “Natural killer cell receptors: regulating innate immune responses to hematologic malignancy,” Seminars in Hematology, vol. 42, no. 2, pp. 91–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Imai, S. Matsuyama, S. Miyake, K. Suga, and K. Nakachi, “Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population,” The Lancet, vol. 356, no. 9244, pp. 1795–1799, 2000. View at Scopus
  28. C. Shuptrine, R. Surana, and L. M. Weiner, “Monoclonal antibodies for the treatment of cancer,” Seminars in Cancer Biology, vol. 22, no. 1, pp. 3–13, 2012.
  29. L. Ruggeri, M. Capanni, E. Urbani et al., “Effectiveness of donor natural killer cell aloreactivity in mismatched hematopoietic transplants,” Science, vol. 295, no. 5562, pp. 2097–2100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Miller, Y. Soignier, A. Panoskaltsis-Mortari et al., “Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer,” Blood, vol. 105, no. 8, pp. 3051–3057, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Yamanaka, H. Tagawa, N. Takahashi et al., “Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia,” Blood, vol. 114, no. 15, pp. 3265–3275, 2009.
  32. D. G. T. Hesslein and L. L. Lanier, “Transcriptional control of natural killer cell development and function,” Advances in Immunology, vol. 109, pp. 45–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Ramirez and B. L. Kee, “Transcriptional regulation of natural killer cell development,” Current Opinion in Immunology, vol. 22, no. 2, pp. 193–198, 2010. View at Publisher · View at Google Scholar
  34. D. B. Stetson, M. Mohrs, R. L. Reinhardt et al., “Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function,” Journal of Experimental Medicine, vol. 198, no. 7, pp. 1069–1076, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Wang, Y. Gu, Q. Zhang et al., “Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity,” The Journal of Immunology, vol. 189, no. 1, pp. 211–221.
  36. X. Liu, Y. Wang, Q. Sun et al., “Identification of microRNA transcriptome involved in human natural killer cell activation,” Immunology Letters, vol. 143, no. 2, pp. 208–217, 2012. View at Publisher · View at Google Scholar
  37. T. A. Fehniger, T. Wylie, E. Germino et al., “Next-generation sequencing identifies the natural killer cell microRNA transcriptome,” Genome Research, vol. 20, no. 11, pp. 1590–1604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. N. A. Bezman, E. Cedars, D. F. Steiner, R. Blelloch, D. G. T. Hesslein, and L. L. Lanier, “Distinct requirements of microRNAs in NK cell activation, survival, and function,” Journal of Immunology, vol. 185, no. 7, pp. 3835–3846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. P. Sullivan, J. W. Leong, S. E. Schneider et al., “MicroRNA deficient NK cells exhibit decreased survival but enhanced function,” The Journal of Immunology, vol. 188, no. 7, pp. 3019–3030, 2012. View at Publisher · View at Google Scholar
  40. M. F. Thomas, S. Abdul-Wajid, M. Panduro et al., “Eri1 regulates microRNA homeostasis and mouse lymphocyte development and anti-viral function,” Blood, vol. 120, no. 1, pp. 130–142, 2012. View at Publisher · View at Google Scholar
  41. L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Vasudevan, Y. Tong, and J. A. Steitz, “Switching from repression to activation: microRNAs can up-regulate translation,” Science, vol. 318, no. 5858, pp. 1931–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. V. N. Kim, “MicroRNA biogenesis: coordinated cropping and dicing,” Nature Reviews Molecular Cell Biology, vol. 6, no. 5, pp. 376–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Wu and J. G. Belasco, “Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs,” Molecular Cell, vol. 29, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Liu, “Control of protein synthesis and mRNA degradation by microRNAs,” Current Opinion in Immunology, vol. 20, no. 2, pp. 214–221, 2008.
  47. A. L. Kasinski and F. J. Slack, “MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy,” Nature Reviews Cancer, vol. 11, no. 12, pp. 849–864, 2011. View at Publisher · View at Google Scholar
  48. F. Lovat, N. Valeri, and C. M. Croce, “MicroRNAs in the pathogenesis of cancer,” Seminars in Oncology, vol. 38, no. 6, pp. 724–733, 2011. View at Publisher · View at Google Scholar
  49. R. M. O'Connell, D. S. Rao, A. A. Chaudhuri, and D. Baltimore, “Physiological and pathological roles for microRNAs in the immune system,” Nature Reviews Immunology, vol. 10, no. 2, pp. 111–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Landgraf, M. Rusu, R. Sheridan et al., “A mammalian microRNA expression atlas based on small RNA library sequencing,” Cell, vol. 129, no. 7, pp. 1401–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. R. L. Rossi, G. Rossetti, L. Wenandy et al., “Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b,” Nature Immunology, vol. 12, pp. 796–803, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Allantaz, D. T. Cheng, T. Bergauer et al., “Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression,” PLoS One, vol. 7, no. 1, p. e29979, 2012.
  53. S. A. Muljo, K. M. Ansel, C. Kanellopoulou, D. M. Livingston, A. Rao, and K. Rajewsky, “Aberrant T cell differentiation in the absence of Dicer,” Journal of Experimental Medicine, vol. 202, no. 2, pp. 261–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. M. W. Chong, J. P. Rasmussen, A. Y. Rudensky, and D. R. Littman, “The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease,” Journal of Experimental Medicine, vol. 205, no. 10, p. 2449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. de Boer, A. Williams, G. Skavdis et al., “Transgenic mice with hematopoietic and lymphoid specific expression of Cre.,” European Journal of Immunology, vol. 33, no. 2, pp. 314–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Eckelhart, W. Warsch, E. Zebedin et al., “A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development,” Blood, vol. 117, no. 5, pp. 1565–1573, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Narni-Mancinelli, J. Chaix, A. Fenis et al., “Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 45, pp. 18324–18329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. P. di Santo, “Natural killer cell developmental pathways: a question of balance,” Annual Review of Immunology, vol. 24, pp. 257–286, 2006. View at Publisher · View at Google Scholar
  59. S. Monticelli, K. M. Ansel, C. Xiao et al., “MicroRNA profiling of the murine hematopoietic system,” Genome biology, vol. 6, no. 8, p. R71, 2005. View at Scopus
  60. B. Zhou, S. Wang, C. Mayr, D. P. Bartel, and H. F. Lodish, “miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7080–7085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Xiao, D. P. Calado, G. Galler et al., “MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb,” Cell, vol. 131, no. 1, pp. 146–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Ghisi, A. Corradin, K. Basso et al., “Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150,” Blood, vol. 117, no. 26, pp. 7053–7062, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. N. A. Bezman, T. Chakraborty, T. Bender, and L. L. Lanier, “miR-150 regulates the development of NK and iNKT cells,” The Journal of Experimental Medicine. In press.
  64. C. Z. Chen, L. Li, H. F. Lodish, and D. P. Bartel, “MicroRNAs modulate hematopoietic lineage differentiation,” Science, vol. 303, no. 5654, pp. 83–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. Q. J. Li, J. Chau, P. J. R. Ebert et al., “miR-181a is an intrinsic modulator of T cell sensitivity and selection,” Cell, vol. 129, no. 1, pp. 147–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Cichocki, M. Felices, V. McCullar et al., “Cutting Edge: microRNA-181 promotes human NK cell development by regulating notch signaling,” The Journal of Immunology, vol. 187, no. 12, pp. 6171–6175, 2011. View at Publisher · View at Google Scholar
  67. V. Bachanova, V. McCullar, T. Lenvik et al., “Activated notch supports development of cytokine producing NK cells which are hyporesponsive and fail to acquire NK cell effector functions,” Biology of Blood and Marrow Transplantation, vol. 15, no. 2, pp. 183–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Haraguchi, T. Suzuki, N. Koyama et al., “Notch activation induces the generation of functional NK cells from human cord blood CD34-positive cells devoid of IL-15 1,” Journal of Immunology, vol. 182, no. 10, pp. 6168–6178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. R. C. Beck, M. Padival, D. Yeh, J. Ralston, K. R. Cooke, and J. B. Lowe, “The notch ligands jagged2, delta1, and delta4 induce differentiation and expansion of functional human NK cells from CD34+ cord blood hematopoietic progenitor cells,” Biology of Blood and Marrow Transplantation, vol. 15, no. 9, pp. 1026–1037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. H. A. Young, “Regulation of interferon-γ gene expression,” Journal of Interferon and Cytokine Research, vol. 16, no. 8, pp. 563–568, 1996. View at Scopus
  71. K. S. A. Khabar and H. A. Young, “Post-transcriptional control of the interferon system,” Biochimie, vol. 89, no. 6-7, pp. 761–769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Huang, Y. Lei, H. Zhang, L. Hou, M. Zhang, and A. I. Dayton, “MicroRNA regulation of STAT4 protein expression: rapid and sensitive modulation of interleukin-12 signaling in human natural killer cells,” Blood, pp. 6793–6802, 2011.
  73. S. Jiang, C. Li, V. Olive et al., “Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation,” Blood, vol. 118, no. 20, pp. 5487–5497, 2011. View at Publisher · View at Google Scholar
  74. F. Ma, S. Xu, X. Liu et al., “The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ,” Nature Immunology, vol. 12, pp. 861–869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. D. F. Steiner, M. F. Thomas, J. K. Hu et al., “MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells,” Immunity, vol. 35, no. 2, pp. 169–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Rodriguez, E. Vigorito, S. Clare et al., “Requirement of bic/microRNA-155 for normal immune function,” Science, vol. 316, no. 5824, pp. 608–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. T. H. Thai, D. P. Calado, S. Casola et al., “Regulation of the germinal center response by MicroRNA-155,” Science, vol. 316, no. 5824, pp. 604–608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Vigorito, K. L. Perks, C. Abreu-Goodger et al., “microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells,” Immunity, vol. 27, no. 6, pp. 847–859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. G. Teng, P. Hakimpour, P. Landgraf et al., “MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase,” Immunity, vol. 28, no. 5, pp. 621–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. R. M. O'Connell, D. Kahn, W. S. J. Gibson et al., “MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development,” Immunity, vol. 33, no. 4, pp. 607–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Kohlhaas, O. A. Garden, C. Scudamore, M. Turner, K. Okkenhaug, and E. Vigorito, “Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells1,” Journal of Immunology, vol. 182, no. 5, pp. 2578–2582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Lu, X. Huang, X. Zhang et al., “miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1,” Blood, vol. 117, no. 16, pp. 4293–4303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. R. M. O'Connell, K. D. Taganov, M. P. Boldin, G. Cheng, and D. Baltimore, “MicroRNA-155 is induced during the macrophage inflammatory response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 5, pp. 1604–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Trotta, L. Chen, D. Ciarlariello et al., “MiR-155 regulates IFN-γ production in natural killer cells,” Blood, vol. 119, no. 15, pp. 3478–3485, 2012. View at Publisher · View at Google Scholar
  85. R. M. O'Connell, A. A. Chaudhuri, D. S. Rao, and D. Baltimore, “Inositol phosphatase SHIP1 is a primary target of miR-155,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 17, pp. 7113–7118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. U. Klein, M. Lia, M. Crespo et al., “The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia,” Cancer Cell, vol. 17, no. 1, pp. 28–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. M. V. Iorio and C. M. Croce, “MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review,” EMBO Molecular Medicine, vol. 4, no. 3, pp. 143–159, 2012. View at Publisher · View at Google Scholar
  88. J. B. Johnnidis, M. H. Harris, R. T. Wheeler et al., “Regulation of progenitor cell proliferation and granulocyte function by microRNA-223,” Nature, vol. 451, no. 7182, pp. 1125–1129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. T. D. Kim, S. U. H. Lee, S. Yun et al., “Human microRNA-27a targets Prf1 and GzmB expression to regulate NK cell cytotoxicity,” Blood, vol. 118, no. 20, pp. 5476–5486, 2011. View at Publisher · View at Google Scholar
  90. J. Gong, R. Liu, R. Zhuang et al., “miR-30c-1 promotes NK cell cytotoxicity against human hepatoma cells via targeting the transcription factor HMBOX1,” Cancer Science, vol. 103, no. 4, pp. 645–652, 2012. View at Publisher · View at Google Scholar
  91. S. Gasser, S. Orsulic, E. J. Brown, and D. H. Raulet, “The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor,” Nature, vol. 436, no. 7054, pp. 1186–1190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Champsaur and L. L. Lanier, “Effect of NKG2D ligand expression on host immune responses,” Immunological Reviews, vol. 235, no. 1, pp. 267–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Stern-Ginossar, N. Elefant, A. Zimmermann et al., “Host immune system gene targeting by a viral miRNA,” Science, vol. 317, no. 5836, pp. 376–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. D. Nachmani, N. Stern-Ginossar, R. Sarid, and O. Mandelboim, “Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells,” Cell Host and Microbe, vol. 5, no. 4, pp. 376–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. N. Stern-Ginossar, C. Gur, M. Biton et al., “Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D,” Nature Immunology, vol. 9, no. 9, pp. 1065–1073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Ishida and Y. L. Kwong, “Diagnosis and management of natural killer-cell malignancies,” Expert Review of Hematology, vol. 3, no. 5, pp. 593–602, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. R. J. Watters, X. Liu, and T. P. Loughran, “T-cell and natural killer-cell large granular lymphocyte leukemia neoplasias,” Leukemia Lymphoma, vol. 52, no. 12, pp. 2217–2225, 2011. View at Publisher · View at Google Scholar
  98. G. Semenzato, F. Marino, and R. Zambello, “State of the art in natural killer cell malignancies,” International Journal of Laboratory Hematology, vol. 34, no. 2, pp. 117–128, 2012. View at Publisher · View at Google Scholar
  99. T. A. Fehniger, K. Suzuki, A. Ponnappan et al., “Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells,” Journal of Experimental Medicine, vol. 193, no. 2, pp. 219–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. T. A. Fehniger, K. Suzuki, J. B. van Deusen, M. A. Cooper, A. G. Freud, and M. A. Caligiuri, “Fatal leukemia in interleukin-15 transgenic mice,” Blood Cells, Molecules, and Diseases, vol. 27, no. 1, pp. 223–230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. J. H. Paik, J. Y. Jang, Y. K. Jeon et al., “MicroRNA-146a downregulates NFκB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma,” Clinical Cancer Research, vol. 17, no. 14, pp. 4761–4771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. S. B. Ng, J. Yan, G. Huang et al., “Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma,” Blood, vol. 118, no. 18, pp. 4919–4929, 2011. View at Publisher · View at Google Scholar
  103. R. Ramakrishnan, H. Donahue, D. Garcia et al., “Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas,” PloS One, vol. 6, no. 11, Article ID e27271, 2011.