About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 647265, 10 pages
http://dx.doi.org/10.1155/2012/647265
Research Article

Self-Organization of Motor-Propelled Cytoskeletal Filaments at Topographically Defined Borders

1School of Natural Sciences, Linnaeus University, 391 82 Kalmar, Sweden
2Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Box 118, S221 00 Lund, Sweden

Received 31 August 2011; Accepted 7 January 2012

Academic Editor: P. Bryant Chase

Copyright © 2012 Alf Månsson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, and S. Mashiko, “Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks,” Biophysical Journal, vol. 72, no. 5, pp. 1997–2001, 1997. View at Scopus
  2. D. V. Nicolau, H. Suzuki, S. Mashiko, T. Taguchi, and S. Yoshikawa, “Actin motion on microlithographically functionalized myosin surfaces and tracks,” Biophysical Journal, vol. 77, no. 2, pp. 1126–1134, 1999. View at Scopus
  3. H. Hess, J. Clemmens, D. Qin, J. Howard, and V. Vogel, “Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces,” Nano Letters, vol. 1, no. 5, pp. 235–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T. Q. P. Uyeda, “Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks,” Biophysical Journal, vol. 81, no. 3, pp. 1555–1561, 2001. View at Scopus
  5. R. Bunk, J. Klinth, J. Rosengren et al., “Towards a “nano-traffic” system powered by molecular motors,” Microelectronic Engineering, vol. 67-68, pp. 899–904, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Jaber, P.B. Chase, and J.B. Schlenoff, “Actomyosin-driven motility on patterned polyelectrolyte mono- and multilayers,” Nano Letters, vol. 3, no. 11, pp. 1505–1509, 2003.
  7. H. Hess, G. D. Bachand, and V. Vogel, “Powering nanodevices with biomolecular motors,” Chemistry—A European Journal, vol. 10, no. 9, pp. 2110–2116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Manandhar, L. Huang, J. R. Grubich, J. W. Hutchinson, P. B. Chase, and S. Hong, “Highly selective directed assembly of functional actomyosin on Au surfaces,” Langmuir, vol. 21, no. 8, pp. 3213–3216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. D. Bachand, S. B. Rivera, A. Carroll-Portillo, H. Hess, and M. Bachand, “Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay,” Small, vol. 2, no. 3, pp. 381–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Sundberg, R. Bunk, N. Albet-Torres et al., “Actin filament guidance on a chip: toward high-throughput assays and lab-on-a-chip applications,” Langmuir, vol. 22, no. 17, pp. 7286–7295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. G. L. Van Den Heuvel and C. Dekker, “Motor proteins at work for nanotechnology,” Science, vol. 317, no. 5836, pp. 333–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Goel and V. Vogel, “Harnessing biological motors to engineer systems for nanoscale transport and assembly,” Nature Nanotechnology, vol. 3, no. 8, pp. 465–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Fischer, A. Agarwal, and H. Hess, “A smart dust biosensor powered by kinesin motors,” Nature Nanotechnology, vol. 4, no. 3, pp. 162–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Rios and G. D. Bachand, “Multiplex transport and detection of cytokines using kinesin-driven molecular shuttles,” Lab on a Chip, vol. 9, no. 7, pp. 1005–1010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Agarwal and H. Hess, “Biomolecular motors at the intersection of nanotechnology and polymer science,” Progress in Polymer Science, vol. 35, no. 1-2, pp. 252–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Korten, A. Månsson, and S. Diez, “Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices,” Current Opinion in Biotechnology, vol. 21, no. 4, pp. 477–488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Takatsuki, K. M. Rice, S. Asano et al., “Utilization of myosin and actin bundles for the transport of molecular cargo,” Small, vol. 6, no. 3, pp. 452–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Hess, J. Clemmens, C. Brunner et al., “Molecular self-assembly of “nanowires” and “nanospools” using active transport,” Nano Letters, vol. 5, no. 4, pp. 629–633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. G. Vikhorev, N. N. Vikhoreva, M. Sundberg et al., “Diffusion dynamics of motor-driven transport: gradient production and self-organization of surfaces,” Langmuir, vol. 24, no. 23, pp. 13509–13517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Butt, T. Mufti, A. Humayun et al., “Myosin motors drive long range alignment of actin filaments,” The Journal of Biological Chemistry, vol. 285, no. 7, pp. 4964–4974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch, “Polar patterns of driven filaments,” Nature, vol. 467, no. 7311, pp. 73–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Kraikivski, R. Lipowsky, and J. Kierfeld, “Enhanced ordering of interacting filaments by molecular motors,” Physical Review Letters, vol. 96, no. 25, Article ID 258103, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Patolsky, Y. Weizmann, and I. Willner, “Actin-based metallic nanowires as bio-nanotransporters,” Nature Materials, vol. 3, no. 10, pp. 692–695, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. H. C. Berg and E. M. Purcell, “Physics of chemoreception,” Biophysical Journal, vol. 20, no. 2, pp. 193–219, 1977. View at Scopus
  25. T. Nitta, A. Tanahashi, M. Hirano, and H. Hess, “Simulating molecular shuttle movements: towards computer-aided design of nanoscale transport systems,” Lab on a Chip, vol. 6, no. 7, pp. 881–885, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Nitta, A. Tanahashi, Y. Obara et al., “Comparing guiding track requirements for myosin-and kinesin-powered molecular shuttles,” Nano Letters, vol. 8, no. 8, pp. 2305–2309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Bunk, M. Sundberg, A. Månsson et al., “Guiding motor-propelled molecules with nanoscale precision through silanized bi-channel structures,” Nanotechnology, vol. 16, no. 6, pp. 710–717, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Bunk, Creation of a Nanometer-Scale Toolbox for Molecular Motor Transport-Circuits, Lund University, 2005.
  29. J. Klinth, A. Arner, and A. Månsson, “Cardiotonic bipyridine amrinone slows myosin-induced actin filament sliding at saturating [MgATP],” Journal of Muscle Research and Cell Motility, vol. 24, no. 1, pp. 15–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Månsson and S. Tågerud, “Multivariate statistics in analysis of data from the in vitro motility assay,” Analytical Biochemistry, vol. 314, no. 2, pp. 281–293, 2003. View at Publisher · View at Google Scholar
  31. M. Sundberg, M. Balaz, R. Bunk et al., “Selective spatial localization of actomyosin motor function by chemical surface patterning,” Langmuir, vol. 22, no. 17, pp. 7302–7312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. G. Vikhorev, N. N. Vikhoreva, and A. Månsson, “Bending flexibility of actin filaments during motor-induced sliding,” Biophysical Journal, vol. 95, no. 12, pp. 5809–5819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Harada, K. Sakurada, T. Aoki, D. D. Thomas, and T. Yanagida, “Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay,” Journal of Molecular Biology, vol. 216, no. 1, pp. 49–68, 1990. View at Scopus
  34. H. Hess, J. Clemmens, J. Howard, and V. Vogel, “Surface imaging by self-propelled nanoscale probes,” Nano Letters, vol. 2, no. 2, pp. 113–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Kim, L. J. Cheng, M. T. Kao, E. F. Hasselbrink, L. Guo, and E. Meyhöfer, “Biomolecular motor-driven molecular sorter,” Lab on a Chip, vol. 9, no. 9, pp. 1282–1285, 2009. View at Publisher · View at Google Scholar · View at Scopus