About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 649353, 10 pages
http://dx.doi.org/10.1155/2012/649353
Research Article

Evaluation of Distinct Freezing Methods and Cryoprotectants for Human Amniotic Fluid Stem Cells Cryopreservation

1Laboratory of Genetics and Molecular Hematology (LIM-31), University of São Paulo Medical School, 05403-000 São Paulo, SP, Brazil
2Fundação Pró-Sangue Hemocentro de São Paulo, 05403-000 São Paulo, SP, Brazil
3Department of Gynecology and Obstetrics, University of São Paulo Medical School, 05403-000 São Paulo, SP, Brazil
4Fetal Medicine, Department of Obstetrics, São Paulo Federal University Medical School, 04021-001 São Paulo, SP, Brazil

Received 29 December 2011; Accepted 6 March 2012

Academic Editor: Steve Winder

Copyright © 2012 Felipe de Lara Janz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Moon, J. R. Lee, B. C. Jee et al., “Successful vitrification of human amnion-derived mesenchymal stem cells,” Human Reproduction, vol. 23, no. 8, pp. 1760–1770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Ozkavukcu and E. Erdemli, “Cryopreservation: basic knowledge and biophysical effects,” Journal of Ankara Medical School, vol. 24, no. 4, pp. 187–196, 2002.
  3. J. M. Davis, S. D. Rowley, H. G. Braine, S. Piantadosi, and G. W. Santos, “Clinical toxicity of cryopreserved bone marrow graft infusion,” Blood, vol. 75, no. 3, pp. 781–786, 1990. View at Scopus
  4. B. Neuhuber, G. Gallo, L. Howard, L. Kostura, A. Mackay, and I. Fischer, “Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype,” Journal of Neuroscience Research, vol. 77, no. 2, pp. 192–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Mareschi, D. Rustichelli, M. Novara et al., “Neural differentiation of human mesenchymal stem cells: evidence for expression of neural markers and eag K+ channel types,” Experimental Hematology, vol. 34, no. 11, pp. 1563–1572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. R. Prusa, E. Marton, M. Rosner et al., “Neurogenic cells in human amniotic fluid,” American Journal of Obstetrics and Gynecology, vol. 191, no. 1, pp. 309–314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. F. Stroncek, S. K. Fautsch, L. C. Lasky, D. D. Hurd, N. K. C. Ramsay, and J. McCullough, “Adverse reactions in patients transfused with cryopreserved marrow,” Transfusion, vol. 31, no. 6, pp. 521–526, 1991. View at Scopus
  8. R. Syme, M. Bewick, D. Stewart, K. Porter, T. Chadderton, and S. Glück, “The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity,” Biology of Blood and Marrow Transplantation, vol. 10, no. 2, pp. 135–141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Friedenstein, U. F. Deriglasova, N. N. Kulagina, et al., “Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method,” Experimental Hematolology, vol. 2, no. 2, pp. 83–92, 1974.
  10. R. Barzilay, I. Kan, T. Ben-Zur, S. Bulvik, E. Melamed, and D. Offen, “Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols,” Stem Cells and Development, vol. 17, no. 3, pp. 547–554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Stock, S. Brückner, S. Ebensing, M. Hempel, M. M. Dollinger, and B. Christ, “The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver,” Nature Protocols, vol. 5, no. 4, pp. 617–627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Prusa and M. Hengstschläger, “Amniotic fluid cells and human stem cell research: a new connection,” Medical Science Monitor, vol. 8, no. 11, pp. 253–257, 2002. View at Scopus
  13. P. S. Anker, S. A. Scherjon, C. Kleijburg-van der Keur et al., “Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation,” Blood, vol. 102, no. 4, pp. 1548–1549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Fauza, “Amniotic fluid and placental stem cells,” Best Practice and Research, vol. 18, no. 6, pp. 877–891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. R. Prusa, E. Marton, M. Rosner, G. Bernaschek, and M. Hengstschläger, “Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research?” Human Reproduction, vol. 18, no. 7, pp. 1489–1493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. B. M. Abdallah and M. Kassem, “Human mesenchymal stem cells: from basic biology to clinical applications,” Gene Therapy, vol. 15, no. 2, pp. 109–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Kolf, E. Cho, and R. S. Tuan, “Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation,” Arthritis Research and Therapy, vol. 9, no. 1, article 204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Shi, G. Hu, J. Su et al., “Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair,” Cell Research, vol. 20, no. 5, pp. 510–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Streubel, G. Martucci-Ivessa, T. Fleck, and R. E. Bittner, “In vitro transformation of amniotic cells to muscle cells-background and outlook,” Wien Medizinische Wochenschrift, vol. 146, no. 9-10, pp. 216–217, 1996.
  20. M. S. Tsai, J. L. Lee, Y. J. Chang, and S. M. Hwang, “Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol,” Human Reproduction, vol. 19, no. 6, pp. 1450–1456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. G. Roubelakis, K. I. Pappa, V. Bitsika et al., “Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells,” Stem Cells and Development, vol. 16, no. 6, pp. 931–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Zangrossi, M. Marabese, M. Broggini et al., “Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker,” Stem Cells, vol. 25, no. 7, pp. 1675–1680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. W. X. Liu, M. J. Luo, P. Huang et al., “Comparative study between slow freezing and vitrification of mouse embryos using different cryoprotectants,” Reproduction in Domestic Animals, vol. 44, no. 5, pp. 788–791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. McCullough, R. Haley, M. Clay, A. Hubel, B. Lindgren, and G. Moroff, “Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer,” Transfusion, vol. 50, no. 4, pp. 808–819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Seo, M. Y. Sohn, J. S. Suh, A. Atala, J. J. Yoo, and Y. H. Shon, “Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide,” Cryobiology, vol. 62, no. 3, pp. 167–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Miranda-Sayago, N. Fernandez-Arcas, C. Benito, A. Reyes-Engel, J. R. Herrero, and A. Alonso, “Evaluation of a low cost cryopreservation system on the biology of human amniotic fluid-derived mesenchymal stromal cells,” Cryobiology. In press. View at Publisher · View at Google Scholar
  27. A. Sputtek, S. Jetter, K. Hummel, and P. Kühnl, “Cryopreservation of peripheral blood progenitor cells: characteristics of suitable techniques,” Beiträge zur Infusionstherapie und Transfusionsmedizin, vol. 34, pp. 79–83, 1997. View at Scopus
  28. F. G. Arnaud, “Cryopreservation of human platelets with 1.4 M glycerol at -196°C,” Thrombosis Research, vol. 53, no. 6, pp. 585–594, 1989. View at Scopus
  29. J. P. Rodrigues, F. H. Paraguassú-Braga, L. Carvalho, E. Abdelhay, L. F. Bouzas, and L. C. Porto, “Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood,” Cryobiology, vol. 56, no. 2, pp. 144–151, 2008. View at Publisher · View at Google Scholar · View at Scopus