About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 673096, 6 pages
http://dx.doi.org/10.1155/2012/673096
Research Article

miRNA589 Regulates Epithelial-Mesenchymal Transition in Human Peritoneal Mesothelial Cells

1Department of Nephrology and Renal Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
2Department of Nephrology and Renal Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
3Department of Pathology and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

Received 24 April 2012; Revised 30 June 2012; Accepted 12 July 2012

Academic Editor: Gary E. Gallick

Copyright © 2012 Ke Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. S. Aroeira, A. Aguilera, R. Selgas et al., “Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor,” American Journal of Kidney Diseases, vol. 46, no. 5, pp. 938–948, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Patel, J. West-Mays, M. Kolb, J. C. Rodrigues, C. M. Hoff, and P. J. Margetts, “Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells,” Matrix Biology, vol. 29, no. 2, pp. 97–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Yáñez-Mó, E. Lara-Pezzi, R. Selgas et al., “Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells,” New England Journal of Medicine, vol. 348, no. 5, pp. 403–413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Loureiro, A. Aguilera, R. Selgas et al., “Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage,” Journal of the American Society of Nephrology, vol. 22, no. 9, pp. 1682–1695, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. P. J. Margetts, P. Bonniaud, L. Liu et al., “Transient overexpression of TGF-β1 induces epithelial mesenchymal transition in the rodent peritoneum,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 425–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Vargha, M. Endemann, K. Kratochwill et al., “Ex vivo reversal of in vivo transdifferentiation in mesothelial cells grown from peritoneal dialysate effluents,” Nephrology Dialysis Transplantation, vol. 21, no. 10, pp. 2943–2947, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Wang, J. Nie, Z. Jia et al., “Impaired TGF-β signalling enhances peritoneal inflammation induced by E. Coli in rats,” Nephrology Dialysis Transplantation, vol. 25, no. 2, pp. 399–412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Ambros, “microRNAs: tiny regulators with great potential,” Cell, vol. 107, no. 7, pp. 823–826, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Birchler and H. H. Kavi, “Molecular biology: slicing and dicing for small RNAs,” Science, vol. 320, no. 5879, pp. 1023–1024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Khvorova, A. Reynolds, and S. D. Jayasena, “Functional siRNAs and miRNAs exhibit strand bias,” Cell, vol. 115, no. 2, pp. 209–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. S. Tellez, D. E. Juri, K. Do et al., “EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells,” Cancer Research, vol. 71, no. 8, pp. 3087–3097, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Wang, P. Koh, C. Winbanks et al., “MiR-200a prevents renal fibrogenesis through repression of TGF-β2 expression,” Diabetes, vol. 60, no. 1, pp. 280–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Vandewalle, J. Comijn, B. De Craene et al., “SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions,” Nucleic Acids Research, vol. 33, no. 20, pp. 6566–6578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Kato, J. Zhang, M. Wang et al., “MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3432–3437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. A. Gregory, A. G. Bert, E. L. Paterson et al., “The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1,” Nature Cell Biology, vol. 10, no. 5, pp. 593–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Loureiro, M. Schilte, A. Aguilera et al., “BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure,” Nephrology Dialysis Transplantation, vol. 25, no. 4, pp. 1098–1108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Patel, Y. Sekiguchi, K. H. Oh, S. E. Patterson, M. R. J. Kolb, and P. J. Margetts, “Smad3-dependent and-independent pathways are involved in peritoneal membrane injury,” Kidney International, vol. 77, no. 4, pp. 319–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Liu, H. Mao, J. Nie et al., “Transforming growth factor β1 induces epithelial-mesenchymal transition by activating the JNK-SMAD3 pathway in rat peritoneal mesothelial cells,” Peritoneal Dialysis International, vol. 28, supplement 3, pp. S88–S95, 2008. View at Scopus
  19. H. Acloque, J. P. Thiery, and M. A. Nieto, “The physiology and pathology of the EMT. Meeting on the Epithelial-mesenchymal transition,” EMBO Reports, vol. 9, no. 4, pp. 322–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Korpal and Y. Kang, “The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis,” RNA Biology, vol. 5, no. 3, pp. 115–119, 2008. View at Scopus