About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 679563, 8 pages
http://dx.doi.org/10.1155/2012/679563
Research Article

Genome-Wide Analysis of mir-548 Gene Family Reveals Evolutionary and Functional Implications

1Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
2Department of Epidemiology and Biostatistics and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China

Received 16 May 2012; Accepted 25 July 2012

Academic Editor: Mouldy Sioud

Copyright © 2012 Tingming Liang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. P. Bartel and C. Z. Chen, “Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs,” Nature Reviews Genetics, vol. 5, no. 5, pp. 396–400, 2004. View at Scopus
  3. R. H. A. Plasterk, “Micro RNAs in animal development,” Cell, vol. 124, no. 5, pp. 877–881, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Lagos-Quintana, R. Rauhut, J. Meyer, A. Borkhardt, and T. Tuschl, “New microRNAs from mouse and human,” RNA, vol. 9, no. 2, pp. 175–179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. L. P. Lim, M. E. Glasner, S. Yekta, C. B. Burge, and D. P. Bartel, “Vertebrate microRNA genes,” Science, vol. 299, no. 5612, p. 1540, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. V. N. Kim and J. W. Nam, “Genomics of microRNA,” Trends in Genetics, vol. 22, no. 3, pp. 165–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, “Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs,” Genes and Development, vol. 17, no. 24, pp. 3011–3016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear export of microRNA precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, “Role for a bidentate ribonuclease in the initiation step of RNA interference,” Nature, vol. 409, no. 6818, pp. 363–366, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Khvorova, A. Reynolds, and S. D. Jayasena, “Erratum: Functional siRNAs and miRNAs exhibit strand bias,” Cell, vol. 115, no. 4, p. 505, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Guo, T. Liang, W. Gu, Y. Xu, Y. Bai, and Z. Lu, “Cross-mapping events in miRNAs reveal potential miRNA-Mimics and evolutionary implications,” PLoS One, vol. 6, no. 5, Article ID e20517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Liu, M. A. Carmell, F. V. Rivas et al., “Argonaute2 is the catalytic engine of mammalian RNAi,” Science, vol. 305, no. 5689, pp. 1437–1441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng, and T. Tuschl, “Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs,” Molecular Cell, vol. 15, no. 2, pp. 185–197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Okamura, M. D. Phillips, D. M. Tyler, H. Duan, Y. T. Chou, and E. C. Lai, “The regulatory activity of microRNA species has substantial influence on microRNA and 3 UTR evolution,” Nature Structural and Molecular Biology, vol. 15, no. 4, pp. 354–363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Okamura, A. Ishizuka, H. Siomi, and M. C. Siomi, “Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways,” Genes and Development, vol. 18, no. 14, pp. 1655–1666, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Guo and Z. Lu, “The fate of miRNA strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule?” PLoS One, vol. 5, no. 6, article e11387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Jagadeeswaran, Y. Zheng, N. Sumathipala et al., “Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development,” BMC Genomics, vol. 11, no. 1, article no. 52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. I. Gregory and R. Shiekhattar, “MicroRNA biogenesis and cancer,” Cancer Research, vol. 65, no. 9, pp. 3509–3512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. N. C. Lau, L. P. Lim, E. G. Weinstein, and D. P. Bartel, “An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 858–862, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Chen and N. Rajewsky, “The evolution of gene regulation by transcription factors and microRNAs,” Nature Reviews Genetics, vol. 8, no. 2, pp. 93–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Niwa and F. J. Slack, “The evolution of animal microRNA function,” Current Opinion in Genetics and Development, vol. 17, no. 2, pp. 145–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Guo, B. Sun, F. Sang, W. Wang, and Z. Lu, “Haplotype distribution and evolutionary pattern of miR-17 and miR-124 families based on population analysis,” PLoS One, vol. 4, no. 11, article e7944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. B. M. Wheeler, A. M. Heimberg, V. N. Moy et al., “The deep evolution of metazoan microRNAs,” Evolution and Development, vol. 11, no. 1, pp. 50–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. M. Borchert, W. Lanier, and B. L. Davidson, “RNA polymerase III transcribes human microRNAs,” Nature Structural and Molecular Biology, vol. 13, no. 12, pp. 1097–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. J. Devor, A. S. Peek, W. Lanier, and P. B. Samollow, “Marsupial-specific microRNAs evolved from marsupial-specific transposable elements,” Gene, vol. 448, no. 2, pp. 187–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Hertel, M. Lindemeyer, K. Missal et al., “The expansion of the metazoan microRNA repertoire,” BMC Genomics, vol. 7, article no. 25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Piriyapongsa, L. Mariño-Ramírez, and I. K. Jordan, “Origin and evolution of human microRNAs from transposable elements,” Genetics, vol. 176, no. 2, pp. 1323–1337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Piriyapongsa and I. K. Jordan, “A family of human microRNA genes from miniature inverted-repeat transposable elements,” PLoS One, vol. 2, no. 2, article no. e203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Piriyapongsa and I. K. Jordan, “Dual coding of siRNAs and miRNAs by plant transposable elements,” RNA, vol. 14, no. 5, pp. 814–821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. N. R. Smalheiser and V. I. Torvik, “Mammalian microRNAs derived from genomic repeats,” Trends in Genetics, vol. 21, no. 6, pp. 322–326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Yuan, X. Sun, D. Jiang et al., “Origin and evolution of a placental-specific microRNA family in the human genome,” BMC Evolutionary Biology, vol. 10, no. 1, article no. 346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Yuan, X. Sun, H. Liu, and J. Xie, “MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes,” PLoS One, vol. 6, no. 3, Article ID e17666, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. H. A. Ebhardt, H. H. Tsang, D. C. Dai, Y. Liu, B. Bostan, and R. P. Fahlman, “Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications,” Nucleic Acids Research, vol. 37, no. 8, pp. 2461–2470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Kuchenbauer, R. D. Morin, B. Argiropoulos et al., “In-depth characterization of the microRNA transcriptome in a leukemia progression model,” Genome Research, vol. 18, no. 11, pp. 1787–1797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, and T. Tuschl, “Identification of tissue-specific microRNAs from mouse,” Current Biology, vol. 12, no. 9, pp. 735–739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. R. D. Morin, M. D. O'Connor, M. Griffith et al., “Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells,” Genome Research, vol. 18, no. 4, pp. 610–621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. G. Ruby, C. Jan, C. Player et al., “Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans,” Cell, vol. 127, no. 6, pp. 1193–1207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Guo and Z. Lu, “Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data,” Computational Biology and Chemistry, vol. 34, no. 3, pp. 165–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. K. E. Shearwin, B. P. Callen, and J. B. Egan, “Transcriptional interference—a crash course,” Trends in Genetics, vol. 21, no. 6, pp. 339–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. C. F. Hongay, P. L. Grisafi, T. Galitski, and G. R. Fink, “Antisense transcription controls cell fate in Saccharomyces cerevisiae,” Cell, vol. 127, no. 4, pp. 735–745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Stark, N. Bushati, C. H. Jan et al., “A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands,” Genes and Development, vol. 22, no. 1, pp. 8–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. E. C. Lai, C. Wiel, and G. M. Rubin, “Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes,” RNA, vol. 10, no. 2, pp. 171–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Kozomara and S. Griffiths-Jones, “MiRBase: integrating microRNA annotation and deep-sequencing data,” Nucleic Acids Research, vol. 39, no. 1, pp. D152–D157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Larkin, G. Blackshields, N. P. Brown et al., “Clustal W and Clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Librado and J. Rozas, “DnaSP v5: a software for comprehensive analysis of DNA polymorphism data,” Bioinformatics, vol. 25, no. 11, pp. 1451–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. H. Huson, “SplitsTree: analyzing and visualizing evolutionary data,” Bioinformatics, vol. 14, no. 1, pp. 68–73, 1998. View at Scopus
  48. D. Bryant and V. Moulton, “Neighbor-Net: an agglomerative method for the construction of phylogenetic networks,” Molecular Biology and Evolution, vol. 21, no. 2, pp. 255–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. H. J. Bandelt, P. Forster, and A. Röhl, “Median-joining networks for inferring intraspecific phylogenies,” Molecular Biology and Evolution, vol. 16, no. 1, pp. 37–48, 1999. View at Scopus
  50. A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. B. P. Lewis, I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge, “Prediction of mammalian microRNA targets,” Cell, vol. 115, no. 7, pp. 787–798, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human microRNA targets,” PLoS Biology, vol. 2, no. 11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, and T. Ideker, “Cytoscape 2.8: new features for data integration and network visualization,” Bioinformatics, vol. 27, no. 3, Article ID btq675, pp. 431–432, 2011. View at Publisher · View at Google Scholar · View at Scopus