About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 695843, 11 pages
http://dx.doi.org/10.1155/2012/695843
Research Article

Plasmodium Riboprotein PfP0 Induces a Deviant Humoral Immune Response in Balb/c Mice

1Malarial Parasite Biology Laboratory, Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
2Bioklone, Chennai 600061, India
3Department of Oncology, The Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins Medical Institute, Baltimore, MD 21231, USA
4Department of Medicine, SCB Medical College Hospital, Cuttack 753007, India
5Basic and Clinical Immunology of Parasitic diseases Group, Centre for Infection and Immunity of Lille, 59019 Lille Cedex, France
6Infectious Disease Biology Group, Institute of Life Sciences, Bhubaneswar 751023, India

Received 5 July 2011; Revised 30 September 2011; Accepted 2 October 2011

Academic Editor: Jorge Morales-Montor

Copyright © 2012 Sulabha Pathak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. E. Rich and J. A. Steitz, “Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, in vitro synthesis, and assembly,” Molecular and Cellular Biology, vol. 7, no. 11, pp. 4065–4074, 1987. View at Scopus
  2. M. T. Saenz-Robles, M. Remacha, M. D. Vilella, S. Zinker, and J. P. G. Ballesta, “The acidic ribosomal proteins as regulators of the eukaryotic ribosomal activity,” Biochimica et Biophysica Acta, vol. 1050, no. 1–3, pp. 51–55, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Uchiumi, A. J. Wahha, and R. R. Traut, “Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by cross linking,” Proceedings of the National Academy of Sciences of United States of America, vol. 84, no. 16, pp. 5580–5584, 1987.
  4. T. Uchiumi and R. Kominami, “Direct evidence for interaction of the conserved GTPase domain within 28 S RNA with mammalian ribosomal acidic phosphoproteins and L12,” Journal of Biological Chemistry, vol. 267, no. 27, pp. 19179–19185, 1992. View at Scopus
  5. C. Santos and J. P. G. Ballesta, “Ribosomal protein P0, contrary to phosphoproteins P1 and P2, is required for ribosome activity and Saccharomyces cerevisiae viability,” Journal of Biological Chemistry, vol. 269, no. 22, pp. 15689–15696, 1994. View at Scopus
  6. S. Das, H. Basu, R. Korde, et al., “Arrest of nuclear division in Plasmodium through blockage of erythrocyte surface exposed ribosomal protein P2,” In press.
  7. A. Yacoub, M. R. Kelley, and W. A. Deutsch, “Drosophila ribosomal protein PO contains apurinic/apyrimidinic endonuclease activity,” Nucleic Acids Research, vol. 24, no. 21, pp. 4298–4303, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. M. V. Frolov and J. A. Birchler, “Mutation in P0, a dual function ribosomal protein/apurinic/apyrimidinic endonuclease, modifies gene expression and position effect variegation in Drosophila,” Genetics, vol. 150, no. 4, pp. 1487–1495, 1998. View at Scopus
  9. E. Brockstedt, A. Rickers, S. Kostka et al., “Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line: cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3,” Journal of Biological Chemistry, vol. 273, no. 43, pp. 28057–28064, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Kondoh, T. Wakatsuki, R. Akihide et al., “Identification and characterization of genes associated with human hepatocellular carcinogenesis,” Cancer Research, vol. 59, no. 19, pp. 4990–4996, 1999. View at Scopus
  11. S. Singh, A. Sehgal, S. Waghmare, T. Chakraborty, A. Goswami, and S. Sharma, “Surface expression of the conserved ribosomal protein P0 on parasite and other cells,” Molecular and Biochemical Parasitology, vol. 119, no. 1, pp. 121–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Hirohata and K. Nakanishi, “Antiribosomal P protein antibody in human systemic lupus erythematosus reacts specifically with activated T cells,” Lupus, vol. 10, no. 9, pp. 612–621, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Koren, M. W. Reichlin, M. Koscec, R. D. Fugate, and M. Reichlin, “Autoantibodies to the ribosomal P proteins react with a plasma membrane- related target on human cells,” Journal of Clinical Investigation, vol. 89, no. 4, pp. 1236–1241, 1992. View at Scopus
  14. G. Frampton, S. Moriya, J. D. Pearson et al., “Identification of candidate endothelial cell autoantigens in systemic lupus erythematosus using a molecular cloning strategy: a role for ribosomal P protein PO as an endothelial cell autoantigen,” Rheumatology, vol. 39, no. 10, pp. 1114–1120, 2000. View at Scopus
  15. A. Goswami, S. Singh, V. D. Redkar, and S. Sharma, “Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum. Antibody against amino-terminal domain inhibits parasite growth,” Journal of Biological Chemistry, vol. 272, no. 18, pp. 12138–12143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. C. A. Lobo, S. K. Kar, B. Ravindran, L. Kabilan, and S. Sharma, “Novel proteins of Plasmodium falciparum identified by differential immunoscreening using immune and patient sera,” Infection and Immunity, vol. 62, no. 2, pp. 651–656, 1994. View at Scopus
  17. I. Malhotra, P. Mungai, E. Muchiri et al., “Distinct Th1- and Th2-type prenatal cytokine responses to Plasmodium falciparum erythrocyte invasion ligands,” Infection and Immunity, vol. 73, no. 6, pp. 3462–3470, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Chatterjee, S. Singh, R. Sohoni et al., “Antibodies against ribosomal phosphoprotein P0 of Plasmodium falciparum protect mice against challenge with Plasmodium yoelii,” Infection and Immunity, vol. 68, no. 7, pp. 4312–4318, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Rajeshwari, K. Patel, S. Nambeesan et al., “The P domain of the P0 protein of Plasmodium falciparum protects against challenge with malaria parasites,” Infection and Immunity, vol. 72, no. 9, pp. 5515–5521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. Rajeshwari and Sharma, Unpublished observation.
  21. S. Chatterjee, S. Singh, R. Sohoni et al., “Characterization of domains of the phosphoriboprotein P0 of Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 107, no. 2, pp. 143–154, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Aruna, T. Chakraborty, S. Nambeesan et al., “Identification of a hypothetical membrane protein interactor of ribosomal phosphoprotein P0,” Journal of Biosciences, vol. 29, no. 1, pp. 33–43, 2004. View at Scopus
  23. A. Hofbauer, Eine Bibliothek monoklonaler Antikorper gegen das Gehirn von Drosophila melanogaster, Habilitation thesis, University of Wurzburg, Wurzburg, Germany, 1991.
  24. B. M. Mony, M. Mehta, G. K. Jarori, and S. Sharma, “Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes,” International Journal for Parasitology, vol. 39, no. 13, pp. 1441–1453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Pal-Bhowmick, H. K. Vora, J. Roy, S. Sharma, and G. K. Jarori, “Generation and characterisation of monoclonal antibodies specific to Plasmodium falciparum enolase,” Journal of Vector Borne Diseases, vol. 43, no. 2, pp. 43–52, 2006. View at Scopus
  26. J. V. Frangioni and B. G. Neel, “Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins,” Analytical Biochemistry, vol. 210, no. 1, pp. 179–187, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Engvall, “Enzyme immunoassay ELISA and EMIT,” Methods in Enzymology, vol. 70, pp. 419–439, 1980. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Claussen, R. Koch, Z. Y. Jin, and B. Suter, “Functional characterization of Drosophila Translin and Trax,” Genetics, vol. 174, no. 3, pp. 1337–1347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Fujii, M. Yoneda, T. Ito et al., “Autoantibodies against the amino terminal of α-enolase are a useful diagnostic marker of Hashimoto's encephalopathy,” Journal of Neuroimmunology, vol. 162, no. 1-2, pp. 130–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Magrys, T. Anekonda, G. Ren, and G. Adamus, “The role of anti-α-enolase autoantibodies in pathogenicity of autoimmune-mediated retinopathy,” Journal of Clinical Immunology, vol. 27, no. 2, pp. 181–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. L. Calame, “Plasma cells: finding new light at the end of B cell development,” Nature Immunology, vol. 2, no. 12, pp. 1103–1108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Bouras, B. M. Riederer, E. Kövari, P. R. Hof, and P. Giannakopoulos, “Humoral immunity in brain aging and Alzheimer's disease,” Brain Research Reviews, vol. 48, no. 3, pp. 477–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Tchernychev, S. Cabilly, and M. Wilchek, “The epitopes for natural polyreactive antibodies are rich in proline,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 12, pp. 6335–6339, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. H. Zhou, A. G. Tzioufas, and A. L. Notkins, “Properties and function of polyreactive antibodies and polyreactive antigen-binding B cells,” Journal of Autoimmunity, vol. 29, no. 4, pp. 219–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Berneman, B. Guilbert, S. Eschrich, and S. Avrameas, “IgG auto- and polyreactivities of normal human sera,” Molecular Immunology, vol. 30, no. 16, pp. 1499–1510, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Bruley-Rosset, L. Mouthon, Y. Chanseaud, F. Dhainaut, J. Lirochon, and D. Bourel, “Polyreactive autoantibodies purified from human intravenous immunoglobulins prevent the development of experimental autoimmune diseases,” Laboratory Investigation, vol. 83, no. 7, pp. 1013–1023, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. http://PlasmoDB.org, 2011.
  38. T. Ternynck, P. B. Falanga, C. Unterkirscher, J. Gregoire, L. Pereira da Silva, and S. Avrameas, “Induction of high levels of IgG autoantibodies in mice infected with Plasmodium chabaudi,” International Immunology, vol. 3, no. 1, pp. 29–37, 1991. View at Scopus
  39. C. T. Daniel-Ribeiro and G. Zanini, “Autoimmunity and malaria: what are they doing together?” Acta Tropica, vol. 76, no. 3, pp. 205–221, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. C. D. Ribeiro, C. Alfred, L. Monjour, and M. Gentilini, “Normal frequency of anti-thyroglobulin antibodies in hyperendemic areas of malaria: relevance to the understanding of autoantibody formation in malaria,” Tropical and Geographical Medicine, vol. 36, no. 4, pp. 323–328, 1984. View at Scopus
  41. V. Hurez, G. Dietrich, S. V. Kaveri, and M. D. Kazatchkine, “Polyreactivity is a property of natural and disease-associated human autoantibodies,” Scandinavian Journal of Immunology, vol. 38, no. 2, pp. 190–196, 1993. View at Scopus
  42. K. A. Siminovitch, V. Misener, P. C. Kwong, Q. L. Song, and P. P. Chen, “A natural autoantibody is encoded by germline heavy and lambda light chain variable region genes without somatic mutation,” Journal of Clinical Investigation, vol. 84, no. 5, pp. 1675–1678, 1989. View at Scopus
  43. I. Sanz, P. Casali, J. W. Thomas, A. L. Notkins, and J. D. Capra, “Nucleotide sequences of eight human natural autoantibody v(H) regions reveals apparent restricted use of V(H) families,” Journal of Immunology, vol. 142, no. 11, pp. 4054–4061, 1989. View at Scopus
  44. L. C. James, P. Roversi, and D. S. Tawfik, “Antibody multispecificity mediated by conformational diversity,” Science, vol. 299, no. 5611, pp. 1362–1367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. D. K. Sethi, A. Agarwal, V. Manivel, K. V. S. Rao, and D. M. Salunke, “Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response,” Immunity, vol. 24, no. 4, pp. 429–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Marsh and S. Kinyanjui, “Immune effector mechanisms in malaria,” Parasite Immunology, vol. 28, no. 1-2, pp. 51–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. B. C. Urban, D. J. P. Ferguson, A. Pain et al., “Plasmodium falciparum infected erythrocytes modulate the maturation of dendritic cells,” Nature, vol. 400, no. 6739, pp. 73–77, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. S. K. Pierce and L. H. Miller, “World Malaria Day 2009: what malaria knows about the immune system that immunologists still do not,” Journal of Immunology, vol. 182, no. 9, pp. 5171–5177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. N. Wykes, Y. H. Zhou, X. Q. Liu, and M. F. Good, “Plasmodium yoelii can ablate vaccine-induced long-term protection in mice,” Journal of Immunology, vol. 175, no. 4, pp. 2510–2516, 2005. View at Scopus
  50. H. Xu, J. Wipasa, H. Yan et al., “The mechanism and significance of deletion of parasite-specific CD4+ T cells in malaria infection,” Journal of Experimental Medicine, vol. 195, no. 7, pp. 881–892, 2002. View at Publisher · View at Google Scholar · View at Scopus