About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 704061, 12 pages
http://dx.doi.org/10.1155/2012/704061
Research Article

Influences of Desmin and Keratin 19 on Passive Biomechanical Properties of Mouse Skeletal Muscle

1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
2Departments of Orthopaedic Surgery and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
3Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
4Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA

Received 28 May 2011; Accepted 10 September 2011

Academic Editor: J.-P. Jin

Copyright © 2012 Sameer B. Shah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Monti, R. R. Roy, J. A. Hodgson, and V. R. Edgerton, “Transmission of forces within mammalian skeletal muscles,” Journal of Biomechanics, vol. 32, no. 4, pp. 371–380, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. J. G. Tidball, “Force transmission across muscle cell membranes,” Journal of Biomechanics, vol. 24, supplement 1, pp. 43–52, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Bloch and H. Gonzalez-Serratos, “Lateral force transmission across costameres in skeletal muscle,” Exercise and Sport Sciences Reviews, vol. 31, no. 2, pp. 73–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. F. Street, “Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters,” Journal of Cellular Physiology, vol. 114, no. 3, pp. 346–364, 1983. View at Scopus
  5. R. J. Bloch, Y. Capetanaki, A. O'Neill et al., “Costameres: repeating structures at the sarcolemma of skeletal muscle,” Clinical Orthopaedics and Related Research, no. 403, pp. S203–S210, 2002. View at Scopus
  6. Y. Capetanaki, R. J. Bloch, A. Kouloumenta, M. Mavroidis, and S. Psarras, “Muscle intermediate filaments and their links to membranes and membranous organelles,” Experimental Cell Research, vol. 313, no. 10, pp. 2063–2076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Paulin and Z. Li, “Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle,” Experimental Cell Research, vol. 301, no. 1, pp. 1–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. B. L. Granger and E. Lazarides, “Desmin and vimentin coexist at the periphery of the myofibril Z disc,” Cell, vol. 18, no. 4, pp. 1053–1063, 1979. View at Scopus
  9. F. L. Richardson, M. H. Stromer, T. W. Huiatt, and R. M. Robson, “Immunoelectron and immunofluorescence localization of desmin in mature avian muscles,” European Journal of Cell Biology, vol. 26, no. 1, pp. 91–101, 1981. View at Scopus
  10. K. T. Tokuyasu, A. H. Dutton, and S. J. Singer, “Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken skeletal muscle,” Journal of Cell Biology, vol. 96, no. 6, pp. 1727–1735, 1983. View at Scopus
  11. K. Wang and R. Ramirez-Mitchell, “A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle,” Journal of Cell Biology, vol. 96, no. 2, pp. 562–570, 1983. View at Scopus
  12. J. V. Pardo, J. D. Siliciano, and S. W. Craig, “Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers,” Journal of Cell Biology, vol. 97, no. 4, pp. 1081–1088, 1983. View at Scopus
  13. J. V. Pardo, J. D. Siliciano, and S. W. Craig, “A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 4, pp. 1008–1012, 1983. View at Scopus
  14. D. J. Milner, M. Mavroidis, N. Weisleder, and Y. Capetanaki, “Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function,” Journal of Cell Biology, vol. 150, no. 6, pp. 1283–1297, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. O'Neill, M. W. Williams, W. G. Resneck, D. J. Milner, Y. Capetanaki, and R. J. Bloch, “Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with the membrane skeleton at costameres,” Molecular Biology of the Cell, vol. 13, no. 7, pp. 2347–2359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. S. B. Shah, F. C. Su, K. Jordan et al., “Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle,” Journal of Experimental Biology, vol. 205, part 3, pp. 321–325, 2002. View at Scopus
  17. M. Sam, S. Shah, J. Fridén, D. J. Milner, Y. Capetanaki, and R. L. Lieber, “Desmin knockout muscles generate lower stress and are less vulnerable to injury compared with wild-type muscles,” American Journal of Physiology—Cell Physiology, vol. 279, no. 4, pp. C1116–C1122, 2000. View at Scopus
  18. R. M. Lovering, A. O'Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” American Journal of Physiology—Cell Physiology, vol. 300, no. 4, pp. C803–C813, 2011. View at Publisher · View at Google Scholar
  19. A. M. Boriek, Y. Capetanaki, W. Hwang et al., “Desmin integrates the three-dimensional mechanical properties of muscles,” American Journal of Physiology—Cell Physiology, vol. 280, no. 1, pp. C46–C52, 2001. View at Scopus
  20. M. R. Stone, A. O'Neill, D. Catino, and R. J. Bloch, “Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19,” Molecular Biology of the Cell, vol. 16, no. 9, pp. 4280–4293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Ursitti, P. C. Lee, W. G. Resneck et al., “Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle: interaction with the dystrophin glycoprotein complex,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 41830–41838, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. R. Stone, A. O'Neill, R. M. Lovering et al., “Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization,” Journal of Cell Science, vol. 120, part 22, pp. 3999–4008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Boer, E. J. de Meijer, E. M. Mank, G. B. van Ommen, and J. T. den Dunnen, “Expression profiling in stably regenerating skeletal muscle of dystrophin-deficient mdx mice,” Neuromuscular Disorders, vol. 12, supplement 1, pp. S118–S124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Marotta, C. Ruiz-Roig, Y. Sarria et al., “Muscle genome-wide expression profiling during disease evolution in mdx mice,” Physiological Genomics, vol. 37, no. 2, pp. 119–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. G. A. Meyer and R. L. Lieber, “Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles,” Journal of Biomechanics, vol. 44, no. 4, pp. 771–773, 2011. View at Publisher · View at Google Scholar
  26. S. B. Shah, J. Davis, N. Weisleder et al., “Structural and functional roles of desmin in mouse skeletal muscle during passive deformation,” Biophysical Journal, vol. 86, no. 5, pp. 2993–3008, 2004. View at Scopus
  27. S. B. Shah and R. L. Lieber, “Simultaneous imaging and functional assessment of cytoskeletal protein connections in passively loaded single muscle cells,” Journal of Histochemistry and Cytochemistry, vol. 51, no. 1, pp. 19–29, 2003. View at Scopus
  28. S. Bensamoun, L. Stevens, M. J. Fleury, G. Bellon, F. Goubel, and M. C. H. B. Tho, “Macroscopic-microscopic characterization of the passive mechanical properties in rat soleus muscle,” Journal of Biomechanics, vol. 39, no. 3, pp. 568–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Ansved and L. Edstrom, “Effects of age on fibre structure, ultrastructure and expression of desmin and spectrin in fast- and slow-twitch rat muscles,” Journal of Anatomy, vol. 174, pp. 61–79, 1991. View at Scopus
  30. K. P. García-Pelagio, R. J. Bloch, A. Ortega, and H. González-Serratos, “Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice,” Journal of Muscle Research and Cell Motility, vol. 31, no. 5-6, pp. 323–336, 2011. View at Publisher · View at Google Scholar
  31. G. A. Meyer, B. Kiss, S. R. Ward, D. L. Morgan, M. S. Z. Kellermayer, and R. L. Lieber, “Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics,” Biophysical Journal, vol. 98, no. 2, pp. 258–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Anderson, Z. Li, and F. Goubel, “Passive stiffness is increased in soleus muscle of desmin knockout mouse,” Muscle and Nerve, vol. 24, no. 8, pp. 1090–1092, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. B. L. Banwell, “Intermediate filament-related myopathies,” Pediatric Neurology, vol. 24, no. 4, pp. 257–263, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Nowak, K. McCullagh, E. Poon, and K. E. Davies, “Muscular dystrophies related to the cytoskeleton/nuclear envelope,” Novartis Foundation Symposium, vol. 264, pp. 98–111, 2005. View at Scopus
  35. D. Paulin, A. Huet, L. Khanamyrian, and Z. Xue, “Desminopathies in muscle disease,” Journal of Pathology, vol. 204, no. 4, pp. 418–427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. D. J. Blake and E. Martin-Rendon, “Intermediate filaments and the function of the dystrophin-protein complex,” Trends in Cardiovascular Medicine, vol. 12, no. 5, pp. 224–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. H. H. Goebel and I. A. P. Warlo, “Progress in desmin-related myopathies,” Journal of Child Neurology, vol. 15, no. 9, pp. 565–572, 2000. View at Scopus