About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 715812, 9 pages
http://dx.doi.org/10.1155/2012/715812
Research Article

Simulating Radiotherapy Effect in High-Grade Glioma by Using Diffusive Modeling and Brain Atlases

1Institute of Computer Science, Foundation For Research and Technology-Hellas, 700 13 Heraklion, Crete, Greece
2Department of Electronic & Computer Engineering, Technical University of Crete, 73100 Chania, Greece

Received 21 February 2012; Revised 18 May 2012; Accepted 21 May 2012

Academic Editor: George E. Plopper

Copyright © 2012 Alexandros Roniotis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, World Health Organization, 2010, http://www.who.int/mediacentre/factsheets/fs297.
  2. P. Boyle and B. Levin, “World cancer report 2008,” IARC, 2010.
  3. Brain Tumors, American Brain Tumor Association, http://www.abta.org/.
  4. Central Brain Tumor Registry of the United States, “Statistical report: primary brain tumors in the United States, 1992–1997,” Tech. Rep., Chicago, Ill, USA, 2000.
  5. M. Tovi, “MR imaging in cerebral gliomas analysis of tumour tissue components.,” Acta Radiologica, Supplement, vol. 384, pp. 1–24, 1993. View at Scopus
  6. S. J. Price, N. G. Burnet, T. Donovan et al., “Diffusion tensor imaging of brain tumours at 3 T: a potential tool for assessing white matter tract invasion?” Clinical Radiology, vol. 58, no. 6, pp. 455–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Lissoni, S. Meregalli, L. Nosetto et al., “Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone,” Oncology, vol. 53, no. 1, pp. 43–46, 1996. View at Scopus
  8. E. G. van Meir, C. G. Hadjipanayis, A. D. Norden, H. K. Shu, P. Y. Wen, and J. J. Olson, “Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma,” CA Cancer Journal for Clinicians, vol. 60, no. 3, pp. 166–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Krex, B. Klink, C. Hartmann et al., “Long-term survival with glioblastoma multiforme,” Brain, vol. 130, no. 10, pp. 2596–2606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. University of California and Los Angeles Neuro-Oncology, “How our patients perform: Glioblastoma Multiforme [GBM],” 2010, http://www.neurooncology.ucla.edu/.
  11. K. R. Swanson, E. C. Alvord, and J. D. Murray, “Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy,” British Journal of Cancer, vol. 86, no. 1, pp. 14–18, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. D. L. Silbergeld, R. C. Rostomily, and E. C. Alvord, “The cause of death in patients with glioblastoma is multifactorial: clinical factors and autopsy findings in 117 cases of supratentorial glioblastoma in adults,” Journal of Neuro-Oncology, vol. 10, no. 2, pp. 179–185, 1991. View at Scopus
  13. A. Claes, A. J. Idema, and P. Wesseling, “Diffuse glioma growth: a guerilla war,” Acta Neuropathologica, vol. 114, no. 5, pp. 443–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity,” Neurosurgery, vol. 57, no. 4, pp. 382–391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. F. G. Blankenberg, R. L. Teplitz, W. Ellis et al., “The influence of volumetric tumor doubling time, DNA ploidy, and histologic grade on the survival of patients with intracranial astrocytomas,” American Journal of Neuroradiology, vol. 16, no. 5, pp. 1001–1012, 1995. View at Scopus
  16. H. B. Frieboes, X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, and V. Cristini, “An integrated computational/experimental model of tumor invasion,” Cancer Research, vol. 66, no. 3, pp. 1597–1604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sjöström, U. Andersson, Y. Liu et al., “Genetic variations in EGF and EGFR and glioblastoma outcome,” Neuro-Oncology, vol. 12, no. 8, pp. 815–821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Cristini, J. Lowengrub, and Q. Nie, “Nonlinear simulation of tumor growth,” Journal of Mathematical Biology, vol. 46, no. 3, pp. 191–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. T. S. Deisboeck, M. E. Berens, A. R. Kansal, S. Torquato, A. O. Stemmer-Rachamimov, and E. A. Chiocca, “Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model,” Cell Proliferation, vol. 34, no. 2, pp. 115–134, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Drasdo and S. Höhme, “A single-cell-based model of tumor growth in vitro: monolayers and spheroids,” Physical Biology, vol. 2, no. 3, pp. 133–147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Tracqui, “From passive diffusion to active cellular migration in mathematical models of tumour invasion,” Acta Biotheoretica, vol. 43, no. 4, pp. 443–464, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. K. R. Swanson, E. C. Alvord, and J. D. Murray, “A quantitative model for differential motility of gliomas in grey and white matter,” Cell Proliferation, vol. 33, no. 5, pp. 317–329, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Jbabdi, E. Mandonnet, H. Duffau et al., “Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging,” Magnetic Resonance in Medicine, vol. 54, no. 3, pp. 616–624, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi, and C. Desmedt, “An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumor to chemotherapy: mimicking a clinical study,” Journal of Theoretical Biology, vol. 266, no. 1, pp. 124–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Clatz, M. Sermesant, P. Y. Bondiau et al., “Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation,” IEEE Transactions on Medical Imaging, vol. 24, no. 10, pp. 1334–1346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Konukoglu, O. Clatz, B. H. Menze et al., “Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations,” IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 77–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Hogea, C. Davatzikos, and G. Biros, “Modeling glioma growth and mass effect in 3D MR images of the brain,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervenion (MICCAI '07), vol. 4791, pp. 642–650, 2007.
  28. A. R. Kansal, S. Torquato, G. R. Harsh, E. A. Chiocca, and T. S. Deisboeck, “Simulated brain tumor growth dynamics using a three-dimensional cellular automaton,” Journal of Theoretical Biology, vol. 203, no. 4, pp. 367–382, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Zizzari, Methods on tumor recognition and planning target prediction for the radiotherapy of cancer [Ph.D. thesis], Electronics Department, University of Magdeburg, 2004.
  30. M. Tabatabai, D. K. Williams, and Z. Bursac, “Hyperbolastic growth models: theory and application,” Theoretical Biology and Medical Modelling, vol. 2, no. 1, p. 14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Roniotis, K. Marias, V. Sakkalis, and M. Zervakis, “Diffusive modelling of glioma evolution: a review,” Journal of Biomedical Science and Engineering, vol. 3, no. 5, pp. 501–508, 2010. View at Publisher · View at Google Scholar
  32. A. Giese and M. Westphal, “Glioma invasion in the central nervous system,” Neurosurgery, vol. 39, no. 2, pp. 235–252, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Giese, R. Bjerkvig, M. E. Berens, and M. Westphal, “Cost of migration: invasion of malignant gliomas and implications for treatment,” Journal of Clinical Oncology, vol. 21, no. 8, pp. 1624–1636, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. T. E. Conturo, N. F. Lori, T. S. Cull et al., “Tracking neuronal fiber pathways in the living human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10422–10427, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. K. R. Swanson, R. C. Rostomily, and E. C. Alvord, “A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle,” British Journal of Cancer, vol. 98, no. 1, pp. 113–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Rockne, J. K. Rockhill, M. Mrugala et al., “Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach,” Physics in Medicine and Biology, vol. 55, no. 12, pp. 3271–3285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Hall, Radiobiology for the Radiologist, J. B. Lippincott, Philadelphia, Pa, USA, 1994.
  38. G. S. Stamatakos, V. P. Antipas, N. K. Uzunoglu, and R. G. Dale, “A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme: studies on the effect of clonogenic cell density,” British Journal of Radiology, vol. 79, no. 941, pp. 389–400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. V. P. Antipas, G. S. Stamatakos, and N. K. Uzunoglu, “A patient-specific in vivo tumor and normal tissue model for prediction of the response to radiotherapy: a computer simulation approach,” Methods of Information in Medicine, vol. 46, no. 3, pp. 367–375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Roniotis, G. Manikis, V. Sakkalis, M. E. Zervakis, I. Karatzanis, and K. Marias, “High grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 2, pp. 255–263, 2011.
  41. A. Roniotis, V. Sakkalis, I. Karatzanis, M. E. Zervakis, and K. Marias, “In-depth analysis and evaluation of diffusive glioma models,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 3, pp. 299–307, 2012. View at Publisher · View at Google Scholar
  42. V. Sakkalis, A. Roniotis, C. Farmaki, I. Karatzanis, and K. Marias, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 6809–6812.
  43. S. Wahl, T. D. C. Foletto, and G. Feldmann, “A mathematical model for the estimation of treatment cost in cancer radiotherapy,” in Proceedings of the 3rd Southern Conference on Computational Modeling (MCSUL '09), pp. 77–81, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. H. L. P. Harpold, E. C. Alvord, and K. R. Swanson, “The evolution of mathematical modeling of glioma proliferation and invasion,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 1, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum, “The SRI24 multichannel atlas of normal adult human brain structure,” Human Brain Mapping, vol. 31, no. 5, pp. 798–819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. http://www.nitrc.org/projects/sri24.
  47. G. Steel, Basic Clinical Radiobiology, Arnold, London, UK, 3rd edition, 2002.
  48. M. Partridge, M. Ramos, A. Sardaro, and M. Brada, “Dose escalation for non-small cell lung cancer: analysis and modelling of published literature,” Radiotherapy and Oncology, vol. 99, no. 1, pp. 6–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Marias, D. Dionysiou, V. Sakkalis et al., “Clinically driven design of multi-scale cancer models: the ContraCancrum project paradigm,” Interface Focus, vol. 1, no. 3, pp. 450–461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. http://mipav.cit.nih.gov/.
  51. E. Skounakis, C. Farmaki, V. Sakkalis et al., “DoctorEye: a clinically driven multifunctional platform, for accurate processing of tumors in medical images,” The Open Medical Informatics Journal, vol. 4, pp. 105–115, 2010. View at Publisher · View at Google Scholar
  52. A. Roniotis, K. Marias, V. Sakkalis, G. D. Tsibidis, and M. Zervakis, “A complete mathematical study of a 3D model of heterogeneous and anisotropic glioma evolution,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 2807–2810, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. J. K. Udupa, V. R. LeBlanc, H. Schmidt et al., “A methodology for evaluating image segmentation algorithms,” in Medical Imaging 2002: Image Processing, pp. 266–277, February 2002. View at Publisher · View at Google Scholar · View at Scopus