About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 716023, 7 pages
http://dx.doi.org/10.1155/2012/716023
Research Article

Assessment of Genotoxic and Cytotoxic Hazards in Brain and Bone Marrow Cells of Newborn Rats Exposed to Extremely Low-Frequency Magnetic Field

Department of Biophysics, Faculty of Science, Cairo University, Giza 12013, Egypt

Received 23 May 2012; Accepted 10 August 2012

Academic Editor: Brynn Levy

Copyright © 2012 Monira M. Rageh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Wertheimer and E. Leeper, “Original contributions. Electrical wiring configurations and childhood cancer,” American Journal of Epidemiology, vol. 109, no. 3, pp. 273–284, 1979. View at Scopus
  2. H. Berg, “Problems of weak electromagnetic field effects in cell biology,” Bioelectrochemistry and Bioenergetics, vol. 48, no. 2, pp. 355–360, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Lai and N. P. Singh, “Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells,” Bioelectromagnetics, vol. 18, no. 2, pp. 156–165, 1997. View at Scopus
  4. H. Lai and N. P. Singh, “Melatonin and N-tert-butyl-α-phenylnitrone block 60 Hz magnetic field-induced DNA single and double strand breaks in rat brain cells,” Journal of Pineal Research, vol. 22, no. 3, pp. 152–162, 1997. View at Scopus
  5. B. M. Svedenstål, K. J. Johanson, and K. Hansson Mild, “DNA damage induced in brain cells of CBA mice exposed to magnetic fields,” In Vivo, vol. 13, no. 6, pp. 551–552, 1999. View at Scopus
  6. B. M. Svedenstål, K. J. Johanson, M. O. Mattsson, and L. E. Paulsson, “DNA damage, cell kinetics and ODC activities studied in CBA mice exposed to electromagnetic fields generated by transmission lines,” In Vivo, vol. 13, no. 6, pp. 507–513, 1999. View at Scopus
  7. H. Yaguchi, M. Yoshida, G. R. Ding, K. Shingu, and J. Miyakoshi, “Increased chromatid-type chromosomal aberrations in mouse m5S cells exposed to power-line frequency magnetic fields,” International Journal of Radiation Biology, vol. 76, no. 12, pp. 1677–1684, 2000. View at Scopus
  8. R. Pasquini, M. Villarini, G. Scassellati Sforzolini, C. Fatigoni, and M. Moretti, “Micronucleus induction in cells co-exposed in vitro to 50 Hz magnetic field and benzene, 1,4-benzenediol (hydroquinone) or 1,2,4-benzenetriol,” Toxicology in Vitro, vol. 17, no. 5-6, pp. 581–586, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. D. Ager and J. A. Radul, “Effect of 60 Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae,” Mutation Research, vol. 283, no. 4, pp. 279–286, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Antonopoulos, B. Yang, A. Stamm, W. D. Heller, and G. Obe, “Cytological effects of 50 Hz electromagnetic fields on human lymphocytes in vitro,” Mutation Research, vol. 346, no. 3, pp. 151–157, 1995. View at Scopus
  11. S. Amara, H. Abdelmelek, C. Garrel et al., “Influence of static magnetic field on cadmium toxicity: Study of oxidative stress and DNA damage in rat tissues,” Journal of Trace Elements in Medicine and Biology, vol. 20, no. 4, pp. 263–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Everse and N. Hsia, “The toxicities of native and modified hemoglobins,” Free Radical Biology and Medicine, vol. 22, no. 6, pp. 1075–1099, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. B. A. Freeman and J. D. Crapo, “Biology of disease. Free radicals and tissue injury,” Laboratory Investigation, vol. 47, no. 5, pp. 412–426, 1982. View at Scopus
  14. N. Hogg and B. Kalyanaraman, “Nitric oxide and lipid peroxidation,” Biochimica et Biophysica Acta, vol. 1411, no. 2-3, pp. 378–384, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Di Loreto, S. Falone, V. Caracciolo et al., “Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons,” Journal of Cellular Physiology, vol. 219, no. 2, pp. 334–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. National Research Council, Guide for the Care and Use of Laboratory Animals, National Academy Press, Washington, DC, USA, 1996.
  17. M. Nishikimi, N. Appaji Rao, and K. Yagi, “The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen,” Biochemical and Biophysical Research Communications, vol. 46, no. 2, pp. 849–854, 1972. View at Scopus
  18. E. Beautler, O. Duron, and B. M. Kelly, “Improved method for the determination of blood glutathione.,” The Journal of Laboratory and Clinical Medicine, vol. 61, pp. 882–888, 1963. View at Scopus
  19. M. Uchiyama and M. Mihara, “Determination of malonaldehyde precursor in tissues by thiobarbituric acid test,” Analytical Biochemistry, vol. 86, no. 1, pp. 271–278, 1978. View at Scopus
  20. P. Moller, L. E. Knudsen, S. Loft, and H. Wallin, “The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 10, pp. 1005–1015, 2000. View at Scopus
  21. W. M. Awara, S. H. El-Nabi, and M. El-Gohary, “Assessment of vinyl chloride-induced DNA damage in lymphocytes of plastic industry workers using a single-cell gel electrophoresis technique,” Toxicology, vol. 128, no. 1, pp. 9–16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, 1988. View at Scopus
  23. R. Tice, E. Agurell, D. Anderson, et al., “Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing,” Environmental and Molecular Mutagenesis, vol. 35, no. 3, pp. 206–221, 2000. View at Publisher · View at Google Scholar
  24. W. Schmidt, “The micronucleus test for cytogenetic analysis,” in Chemical Mutagens, Principles and Methods for Their Detection, A. Hollaender, Ed., pp. 31–53, Plenum Press, New York, NY, USA, 1976.
  25. D. K. Agarwal and L. K. S. Chauhan, “An improved chemical substitute for fetal calf serum for the micronucleus test,” Biotechnic and Histochemistry, vol. 68, no. 4, pp. 187–188, 1993. View at Scopus
  26. I. Adler, “Cytogenetic tests in mammals,” in Mutagenicity Testing, A Practical Approach, S. Venitt and J. M. Parry, Eds., pp. 275–306, IRL Press, Oxford, UK, 1984.
  27. B. Brocklehurst and K. A. McLauchlan, “Free radical mechanism for the effects of environmental electromagnetic fields on biological systems,” International Journal of Radiation Biology, vol. 69, no. 1, pp. 3–24, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Zheng, G. Yao, L. Xie, Y. Lin, D. Q. H. Lu, and Chiang, “Effects of 50 Hz magnetic fields on lipid peroxydation and antioxidase activities in brain tissue of mice,” in Proceedings of the 2nd World Congress for Electricity and Magnetism in Biology and Medicine, 1997.
  29. T. B. Kryston, A. B. Georgiev, P. Pissis, and A. G. Georgakilas, “Role of oxidative stress and DNA damage in human carcinogenesis,” Mutation Research, vol. 711, no. 1-2, pp. 193–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Udroiu, M. Cristaldi, L. A. Ieradi, A. Bedini, L. Giuliani, and C. Tanzarella, “Clastogenicity and aneuploidy in newborn and adult mice exposed to 50 Hz magnetic fields,” International Journal of Radiation Biology, vol. 82, no. 8, pp. 561–567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Dominici, M. Villarini, C. Fatigoni, S. Monarca, and M. Moretti, “Genotoxic hazard evaluation in welders occupationally exposed to extremely low-frequency magnetic fields ( ELF-MF),” International Journal of Hygiene and Environmental Health, vol. 215, no. 1, pp. 68–75, 2011. View at Publisher · View at Google Scholar
  32. H. Lai and N. P. Singh, “Magnetic field-induced DNA strand breaks in brain cells of the rat,” Environmental Health Perspectives, vol. 112, no. 6, pp. 687–694, 2004. View at Scopus
  33. A. Lacy-Hulbert, J. C. Metcalfe, and R. Hesketh, “Biological responses to electromagnetic fields,” FASEB Journal, vol. 12, no. 6, pp. 395–420, 1998. View at Scopus