About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 721285, 8 pages
http://dx.doi.org/10.1155/2012/721285
Research Article

Sesquiterpene Lactones Isolated from Elephantopus scaber L. Inhibits Human Lymphocyte Proliferation and the Growth of Tumour Cell Lines and Induces Apoptosis In Vitro

1Phytochemistry and Phytopharmacology Division, Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, India
2Organic Chemistry Division, National Institute for Interdisciplinary Science and Technology (NIIST), CSIR, Thiruvananthapuram 695 019, India
3Ethnopharmacology Division, Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, India
4Cancer Research Division, Regional Cancer Centre, Thiruvananthapuram 695 011, India

Received 19 July 2011; Revised 28 October 2011; Accepted 29 October 2011

Academic Editor: Ikhlas A. Khan

Copyright © 2012 B. S. Geetha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study was designed to isolate the compounds responsible for the cytotoxic properties of South Indian Elephantopus scaber L. and further investigate their effects on quiescent and proliferating cells. Bioassay-guided isolation of the whole plant of chloroform extract of South Indian Elephantopus scaber afforded the known sesquiterpene lactone, deoxyelephantopin, and isodeoxyelephantopin whose structures were determined by spectroscopic methods. These compounds caused a dose dependent reduction in the viability of L-929 tumour cells in 72 h culture (IC50 value of 2.7 μg/mL and 3.3 μg/mL) by the cell viability assay. Both the compounds act selectively on quiescent and PHA-stimulated proliferating human lymphocytes and inhibited tritiated thymidine incorporation into cellular DNA of DLA tumour cells. The compound deoxyelephantopin at a concentration of 3 μg/mL caused maximum apoptotic cells. It also exhibited significant in vivo antitumour efficacy against DLA tumour cells. The results, therefore, indicate that the antiproliferative property of deoxyelephantopin and isodeoxyelephantopin could be used in regimens for treating tumors with extensive proliferative potencies.