About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 721657, 13 pages
http://dx.doi.org/10.1155/2012/721657
Review Article

The Plasminogen Activation System and the Regulation of Catecholaminergic Function

1Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
2Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA

Received 20 March 2012; Accepted 17 May 2012

Academic Editor: David M. Waisman

Copyright © 2012 Hongdong Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Parmer, M. Mahata, Y. Gong et al., “Processing of chromogranin A by plasmin provides a novel mechanism for regulating catecholamine secretion,” Journal of Clinical Investigation, vol. 106, no. 7, pp. 907–915, 2000. View at Scopus
  2. L. A. Miles, S. B. Hawley, and R. J. Parmer, “Chromaffin cell plasminogen receptors,” Annals of the New York Academy of Sciences, vol. 971, pp. 454–459, 2002. View at Scopus
  3. P. Kristensen, D. M. Hougaard, L. S. Nielsen, and K. Danø, “Tissue-type plasminogen activator in rat adrenal medulla,” Histochemistry, vol. 85, no. 5, pp. 431–436, 1986. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Leprince, B. Rogister, P. Delree, J. M. Rigo, B. Andre, and G. Moonen, “Modulation of proteolytic activity during neuritogenesis in the PC12 nerve cell: differential control of plasminogen activator and plasminogen activator inhibitor activities by nerve growth factor and dibutyryl-cyclic AMP,” Journal of Neurochemistry, vol. 57, no. 2, pp. 665–674, 1991. View at Scopus
  5. R. N. Pittman and A. J. DiBenedetto, “PC12 cells overexpressing tissue plasminogen activator regenerate neurites to a greater extent and migrate faster than control cells in complex extracellular matrix,” Journal of Neurochemistry, vol. 64, no. 2, pp. 566–575, 1995. View at Scopus
  6. A. Gualandris, T. E. Jones, S. Strickland, and S. E. Tsirka, “Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator,” Journal of Neuroscience, vol. 16, no. 7, pp. 2220–2225, 1996. View at Scopus
  7. R. J. Parmer, M. Mahata, S. Mahata, M. T. Sebald, D. T. O'Connor, and L. A. Miles, “Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway: catecholamine storage vesicles as a reservoir for the rapid release of t-PA,” The Journal of Biological Chemistry, vol. 272, no. 3, pp. 1976–1982, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. R. N. Pittman, J. K. Ivins, and H. M. Buettner, “Neuronal plasminogen acivators: cell surface binding sites and involvement in neurite outgrowth,” Journal of Neuroscience, vol. 9, no. 12, pp. 4269–4286, 1989. View at Scopus
  9. Q. Jiang, N. A. Gingles, M. A. Olivier, L. A. Miles, and R. J. Parmer, “The anti-fibrinolytic SERPIN, plasminogen activator inhibitor 1 (PAI-1), is targeted to and released from catecholamine storage vesicles,” Blood, vol. 117, no. 26, pp. 7155–7163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. Parmar, L. C. Coates, J. F. Pearson, R. M. Hill, and N. P. Birch, “Neuroserpin regulates neurite outgrowth in nerve growth factor-treated PC12 cells,” Journal of Neurochemistry, vol. 82, no. 6, pp. 1406–1415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. J. Fowler, N. Mackman, R. J. Parmer, and L. A. Miles, “Molecular basis for the species specificity of single chain urokinase (Scu-PA) binding to the urokinase receptor (u-PAR),” Circulation, vol. 94, pp. I–512, 1996. View at Publisher · View at Google Scholar
  12. H. R. Herschman, G. D. Ferguson, J. D. Feldman, R. Farias-Eisner, and L. Vician, “Searching for depolarization-induced genes that modulate synaptic plasticity and neurotrophin-induced genes that mediate neuronal differentiation,” Neurochemical Research, vol. 25, no. 5, pp. 591–602, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. A. H. Chou, S. Zheng, T. Itsukaichi, and B. D. Howard, “Wnt-1 inhibits nerve growth factor-induced differentiation of PC12 cells by preventing the induction of some but not all late-response genes,” Molecular Brain Research, vol. 77, no. 2, pp. 232–245, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. L. A. Miles, S. B. Hawley, N. Baik, N. M. Andronicos, F. J. Castellino, and R. J. Parmer, “Plasminogen receptors: the sine qua non of cell surface plasminogen activation,” Frontiers in Bioscience, vol. 10, no. 2, pp. 1754–1762, 2005. View at Scopus
  15. E. F. Plow, D. E. Freaney, J. Plescia, and L. A. Miles, “The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type,” Journal of Cell Biology, vol. 103, no. 6 I, pp. 2411–2420, 1986. View at Scopus
  16. S. W. Hall, J. E. Humphries, and S. L. Gonias, “Inhibition of cell surface receptor-bound plasmin by α2-antiplasmin and α2-macroglobulin,” The Journal of Biological Chemistry, vol. 266, no. 19, pp. 12329–12336, 1991. View at Scopus
  17. Q. Jiang, L. Taupenot, S. K. Mahata et al., “Proteolytic cleavage of chromogranin A (CgA) by plasmin: selective liberation of a specific bioactive CgA fragment that regulates catecholamine release,” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 25022–25029, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. N. M. Andronicos, E. I. Chen, N. Baik et al., “Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation,” Blood, vol. 115, no. 7, pp. 1319–1330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. B. Kelly, “Pathways of protein secretion in eukaryotes,” Science, vol. 230, no. 4721, pp. 25–32, 1985. View at Scopus
  20. H. P. Moore, “Factors controlling packaging of peptide hormones into secretory granules,” Annals of the New York Academy of Sciences, vol. 493, pp. 50–61, 1987. View at Scopus
  21. H. Winkler and E. Westhead, “The molecular organization of adrenal chromaffin granules,” Neuroscience, vol. 5, no. 11, pp. 1803–1823, 1980. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Parmer, X. P. Xi, H. J. Wu, L. J. Helman, and L. N. Petz, “Secretory protein traffic. Chromogranin A contains a dominant targeting signal for the regulated pathway,” Journal of Clinical Investigation, vol. 92, no. 2, pp. 1042–1054, 1993. View at Scopus
  23. E. S. Schweitzer and R. B. Kelly, “Selective packaging of human growth hormone into synaptic vesicles in a rat neuronal (PC12) cell line,” Journal of Cell Biology, vol. 101, no. 2, pp. 667–676, 1985. View at Scopus
  24. L. A. Miles, N. M. Andronicos, N. Baik, and R. J. Parmer, “Cell-surface actin binds plasminogen and modulates neurotransmitter release from catecholaminergic cells,” Journal of Neuroscience, vol. 26, no. 50, pp. 13017–13024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Bai, N. Baik, W. B. Kiosses, S. Krajewski, L. A. Miles, and R. J. Parmer, “The novel plasminogen receptor, plasminogen receptorKT (Plg-RKT), regulates catecholamine release,” The Journal of Biological Chemistry, vol. 286, pp. 33125–33133, 2011. View at Publisher · View at Google Scholar
  26. K. Fujita, P. Lazarovici, and G. Guroff, “Regulation of the differentiation of PC12 pheochromocytoma cells,” Environmental Health Perspectives, vol. 80, pp. 127–142, 1989. View at Scopus
  27. J. E. Lochner, M. Kingma, S. Kuhn, C. D. Meliza, B. Cutler, and B. A. Scalettar, “Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid,” Molecular Biology of the Cell, vol. 9, no. 9, pp. 2463–2476, 1998. View at Scopus
  28. J. R. Abney, C. D. Meliza, B. Cutler, M. Kingma, J. E. Lochner, and B. A. Scalettar, “Real-time imaging of the dynamics of secretory granules in growth cones,” Biophysical Journal, vol. 77, no. 5, pp. 2887–2895, 1999. View at Scopus
  29. J. W. Taraska, D. Perrais, M. Ohara-Imaizumi, S. Nagamatsu, and W. Almers, “Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 2070–2075, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Tsuboi and M. Fukuda, “Synaptotagmin VII modulates the kinetics of dense-core vesicle exocytosis in PC12 cells,” Genes to Cells, vol. 12, no. 4, pp. 511–519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Felmy, “Modulation of cargo release from dense core granules by size and actin network,” Traffic, vol. 8, no. 8, pp. 983–997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Aoki, T. Kitaguchi, M. Oya et al., “Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis,” Biochemical Journal, vol. 429, no. 3, pp. 497–504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Tsuboi, T. Kitaguchi, S. Karasawa, M. Fukuda, and A. Miyawaki, “Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein,” Molecular Biology of the Cell, vol. 21, no. 1, pp. 87–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. G. Macfarlane and R. Biggs, “Observations on fibrinolysis; spontaneous activity associated with surgical operations, trauma, & c,” The Lancet, vol. 2, no. 6433, pp. 862–864, 1946. View at Scopus
  35. R. Biggs, R. G. Macfarlane, and J. Pilling, “Observations on fibrinolysis; experimental activity produced by exercise and adrenaline,” The Lancet, vol. 1, no. 6448, pp. 402–405, 1947. View at Scopus
  36. P. Fantl and S. E. Simon, “Fibrinolysis following electrically-induced convulsions,” Australian Journal of Experimental Biology & Medical Science, vol. 26, no. 6, pp. 521–529, 1948.
  37. S. A. Schneck and K. N. von Kaulla, “Fibrinolysis and the nervous system,” Neurology, vol. 11, pp. 959–969, 1961. View at Scopus
  38. T. Peng, X. Jiang, Y. F. Wang et al., “Sympathectomy decreases and adrenergic stimulation increases the release of tissue plasminogen activator (t-PA) from blood vessels: functional evidence for a neurologic regulation of plasmin production within vessel walls and other tissue matrices,” Journal of Neuroscience Research, vol. 57, no. 5, pp. 680–692, 1999.
  39. X. Jiang, Y. Wang, A. R. Hand et al., “Storage and release of tissue plasminogen activator by sympathetic axons in resistance vessel walls,” Microvascular Research, vol. 64, no. 3, pp. 438–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. S. J. An, C. P. Grabner, and D. Zenisek, “Real-time visualization of complexin during single exocytic events,” Nature Neuroscience, vol. 13, no. 5, pp. 577–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Ishigami, M. Sandkvist, F. Tsui, E. Moore, T. A. Coleman, and D. A. Lawrence, “Identification of a novel targeting sequence for regulated secretion in the serine protease inhibitor neuroserpin,” Biochemical Journal, vol. 402, no. 1, pp. 25–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Estreicher, A. Wohlwend, D. Belin, W. D. Schleuning, and J. D. Vassalli, “Characterization of the cellular binding site for the urokinase-type plasminogen activator,” The Journal of Biological Chemistry, vol. 264, no. 2, pp. 1180–1189, 1989. View at Scopus
  43. H. Solberg, D. Lober, J. Eriksen et al., “Identification and characterization of the murine cell surface receptor for the urokinase-type plasminogen activator,” European Journal of Biochemistry, vol. 205, no. 2, pp. 451–458, 1992. View at Scopus
  44. B. Fowler, N. Mackman, R. J. Parmer, and L. A. Miles, “Binding of human single chain urokinase to chinese hamster ovary cells and cloning of hamster u-PAR,” Thrombosis and Haemostasis, vol. 80, no. 1, pp. 148–154, 1998. View at Scopus
  45. S. A. Rabbani, N. Rajwans, A. Achbarou, K. K. Murthy, and D. Goltzman, “Isolation and acharacterization of multiple isoforms of the rat urokinase receptor in osteoclasts,” FEBS Letters, vol. 338, no. 1, pp. 69–74, 1994. View at Publisher · View at Google Scholar
  46. R. Farias-Eisner, L. Vician, A. Silver, S. Reddy, S. A. Rabbani, and H. R. Herschman, “The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation,” Journal of Neuroscience, vol. 20, no. 1, pp. 230–239, 2000. View at Scopus
  47. R. Farias-Eisner, L. Vician, S. Reddy et al., “Expression of the urokinase plasminogen activator receptor is transiently required during, “priming” of PC12 cells in nerve growth factor-directed cellular differentiation,” Journal of Neuroscience Research, vol. 63, no. 4, pp. 341–346, 2001.
  48. L. Marek, V. Levresse, C. Amura et al., “Multiple signaling conduits regulate global differentiation-specific gene expression in PC12 cells,” Journal of Cellular Physiology, vol. 201, no. 3, pp. 459–469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Su, K. R. Kozak, H. Herschman, S. T. Reddy, and R. Farias-Eisner, “Characterization of the rat urokinase plasminogen activator receptor promoter in PC12 cells,” Journal of Neuroscience Research, vol. 85, no. 9, pp. 1952–1958, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. T. J. Maures, L. Chen, and C. Carter-Su, “Nucleocytoplasmic shuttling of the adapter protein SH2B1β (SH2-Bβ) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes,” Molecular Endocrinology, vol. 23, no. 7, pp. 1077–1091, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Chen, T. J. Maures, H. Jin et al., “SH2B1β (SH2-Bβ) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10,” Molecular Endocrinology, vol. 22, no. 2, pp. 454–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. F. J. Castellino and S. G. McCance, “The kringle domains of human plasminogen,” CIBA Foundation Symposia, no. 212, pp. 46–60, 1997. View at Scopus
  53. J. Hoover-Plow, O. Skomorovska-Prokvolit, and S. Welsh, “Selective behaviors altered in plasminogen-deficient mice are reconstituted with intracerebroventricular injection of plasminogen,” Brain Research, vol. 898, no. 2, pp. 256–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Colombo, R. Longhi, C. Marinzi et al., “Cleavage of chromogranin A N-terminal domain by plasmin provides a new mechanism for regulating cell adhesion,” The Journal of Biological Chemistry, vol. 277, no. 48, pp. 45911–45919, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. Jiang, S. Yasothornsrikul, L. Taupenot, L. A. Miles, and R. J. Parmer, “The local chromaffin cell plasminogen/plasmin system and the regulation of catecholamine secretion,” Annals of the New York Academy of Sciences, vol. 971, pp. 445–449, 2002. View at Scopus
  56. P. T. Pang, H. K. Teng, E. Zaitsev et al., “Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity,” Science, vol. 306, no. 5695, pp. 487–491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Wang, L. Zhang, L. Miles, and J. Hoover-Plow, “Plasminogen regulates pro-opiomelanocortin processing,” Journal of Thrombosis and Haemostasis, vol. 2, no. 5, pp. 785–796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Winkler, “The composition of adrenal chromaffin granules: an assessment of controversial results,” Neuroscience, vol. 1, no. 2, pp. 65–80, 1976. View at Publisher · View at Google Scholar · View at Scopus
  59. D. T. O'Connor, R. J. Parmer, and L. J. Deftos, “Chromogranin A: studies in the endocrine system,” Transactions of the Association of American Physicians, vol. 97, pp. 242–250, 1984. View at Scopus
  60. K. Tatemoto, S. Efendic, and V. Mutt, “Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion,” Nature, vol. 324, no. 6096, pp. 476–478, 1986. View at Scopus
  61. J. C. Hutton, H. W. Davidson, and M. Peshavaria, “Proteolytic processing of chromogranin A in purified insulin granules. Formation of a 20 kDa N-terminal fragment (betagranin) by the concerted action of a Ca2+-dependent endopeptidase and carboxypeptidase H (EC 3.4.17.10),” Biochemical Journal, vol. 244, no. 2, pp. 457–464, 1987. View at Scopus
  62. S. Aardal and K. B. Helle, “The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels,” Regulatory Peptides, vol. 41, no. 1, pp. 9–18, 1992. View at Publisher · View at Google Scholar · View at Scopus
  63. B. M. Drees, J. Rouse, J. Johnson, and J. W. Hamilton, “Bovine parathyroid glands secrete a 26-kDa N-terminal fragment of chromogranin-A which inhibits parathyroid cell secretion,” Endocrinology, vol. 129, no. 6, pp. 3381–3387, 1991. View at Scopus
  64. B. H. Fasciotto, C. A. Trauss, G. H. Greeley, and D. V. Cohn, “Parastatin (porcine chromogranin A347-419), a novel chromogranin A-derived peptide, inhibits parathyroid cell secretion,” Endocrinology, vol. 133, no. 2, pp. 461–466, 1993. View at Publisher · View at Google Scholar · View at Scopus
  65. J. P. Simon, M. F. Bader, and D. Aunis, “Secretion from chromaffin cells is controlled by chromogranin A-derived peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 5, pp. 1712–1716, 1988. View at Scopus
  66. E. Galindo, A. Rill, M. F. Bader, and D. Aunis, “Chromostatin, a 20-amino acid peptide derived from chromogranin A, inhibits chromaffin cell secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 4, pp. 1426–1430, 1991. View at Scopus
  67. S. K. Mahata, D. T. O'Connor, M. Mahata et al., “Novel autocrine feedback control of catecholamine release: a discrete chromogranin A fragment is a noncompetitive nicotinic cholinergic antagonist,” Journal of Clinical Investigation, vol. 100, no. 6, pp. 1623–1633, 1997. View at Scopus
  68. C. Bordier, “Phase separation of integral membrane proteins in Triton X-114 solution,” The Journal of Biological Chemistry, vol. 256, no. 4, pp. 1604–1607, 1981. View at Scopus
  69. L. A. Miles, C. M. Dahlberg, J. Plescia, J. Felez, K. Kato, and E. F. Plow, “Role of cell-surface lysines in plasminogen binding to cells: identification of α-enolase as a candidate plasminogen receptor,” Biochemistry, vol. 30, no. 6, pp. 1682–1691, 1991. View at Scopus
  70. G. Kassam, K. S. Choi, J. Ghuman et al., “The role of annexin II tetramer in the activation of plasminogen,” The Journal of Biological Chemistry, vol. 273, no. 8, pp. 4790–4799, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Kassam, B. H. Le, K. S. Choi et al., “The p11 subunit of the annexin II tetramer plays a key role in the stimulation of t-PA-dependent plasminogen activation,” Biochemistry, vol. 37, no. 48, pp. 16958–16966, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Herren, T. A. Burke, R. Das, and E. F. Plow, “Identification of histone H2B as a regulated plasminogen receptor,” Biochemistry, vol. 45, no. 31, pp. 9463–9474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. S. B. Hawley, T. A. Tamura, and L. A. Miles, “Purification, cloning, and characterization of a profibrinolytic plasminogen-binding protein, TIP49a,” The Journal of Biological Chemistry, vol. 276, no. 1, pp. 179–186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. R. J. Parmer and L. A. Miles, “Targeting of tissue plasminogen activator to the regulated pathway of secretion,” Trends in Cardiovascular Medicine, vol. 8, no. 7, pp. 306–312, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. A. P. Sappino, R. Madani, J. Huarte et al., “Extracellular proteolysis in the adult murine brain,” Journal of Clinical Investigation, vol. 92, no. 2, pp. 679–685, 1993. View at Scopus
  76. G. C. Friedman and N. W. Seeds, “Tissue plasminogen activator mRNA expression in granule neurons coincides with their migration in the developing cerebellum,” Journal of Comparative Neurology, vol. 360, no. 4, pp. 658–670, 1995. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Zhang, D. Seiffert, B. J. Fowler et al., “Plasminogen has a broad extrahepatic distribution,” Thrombosis and Haemostasis, vol. 87, no. 3, pp. 493–501, 2002. View at Scopus
  78. Z. Qian, M. E. Gilbert, M. A. Colicos, E. R. Kandel, and D. Kuhl, “Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation,” Nature, vol. 361, no. 6411, pp. 453–457, 1993. View at Publisher · View at Google Scholar · View at Scopus
  79. S. E. Tsirka, A. D. Rogove, T. H. Bugge, J. L. Degen, and S. Strickland, “An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus,” Journal of Neuroscience, vol. 17, no. 2, pp. 543–552, 1997. View at Scopus
  80. D. Baranes, D. Lederfein, V. Y. Huang, M. Chen, C. H. Bailey, and E. R. Kandel, “Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway,” Neuron, vol. 21, no. 4, pp. 813–825, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. F. J. Sallés and S. Strickland, “Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus,” Journal of Neuroscience, vol. 22, no. 6, pp. 2125–2134, 2002. View at Scopus
  82. Z. Hao, C. Guo, X. Jiang et al., “New transgenic evidence for a system of sympathetic axons able to express tissue plasminogen activator (t-PA) within arterial/arteriolar walls,” Blood, vol. 108, no. 1, pp. 200–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. T. Jacovina, F. Zhong, E. Khazanova, E. Lev, A. B. Deora, and K. A. Hajjar, “Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells requires annexin II-mediated plasmin generation,” The Journal of Biological Chemistry, vol. 276, no. 52, pp. 49350–49358, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Gutiérrez-Fernández, N. A. Gingles, H. Bai, F. J. Castellino, R. J. Parmer, and L. A. Miles, “Plasminogen enhances neuritogenesis on laminin-1,” Journal of Neuroscience, vol. 29, no. 40, pp. 12393–12400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. S. E. Tsirka, A. Gualandris, D. G. Amaral, and S. Strickland, “Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator,” Nature, vol. 377, no. 6547, pp. 340–344, 1995. View at Scopus
  86. S. E. Tsirka, A. D. Rogove, and S. Strickland, “Neuronal cell death and tPA,” Nature, vol. 384, no. 6605, pp. 123–124, 1996. View at Scopus
  87. P. Carmeliet, L. Schoonjans, L. Kieckens et al., “Physiological consequences of loss of plasminogen activator gene function in mice,” Nature, vol. 368, no. 6470, pp. 419–424, 1994. View at Publisher · View at Google Scholar · View at Scopus
  88. U. Frey, M. Müller, and D. Kuhl, “A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice,” Journal of Neuroscience, vol. 16, no. 6, pp. 2057–2063, 1996. View at Scopus
  89. Y. Y. Huang, M. E. Bach, H. P. Lipp et al., “Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8699–8704, 1996. View at Publisher · View at Google Scholar · View at Scopus
  90. N. W. Seeds, M. E. Basham, and J. E. Ferguson, “Absence of tissue plasminogen activator gene or activity impairs mouse cerebellar motor learning,” Journal of Neuroscience, vol. 23, no. 19, pp. 7368–7375, 2003. View at Scopus