About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 752391, 8 pages
http://dx.doi.org/10.1155/2012/752391
Research Article

Expression Pattern of the Alpha-Kafirin Promoter Coupled with a Signal Peptide from Sorghum bicolor L. Moench

1School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
2School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
3Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4072, Australia

Received 1 August 2011; Revised 9 October 2011; Accepted 11 October 2011

Academic Editor: J. Birchler

Copyright © 2012 Norazlina Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Stoger, J. K. C. Ma, R. Fischer, and P. Christou, “Sowing the seeds of success: pharmaceutical proteins from plants,” Current Opinion in Biotechnology, vol. 16, no. 2, pp. 167–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. B. J. Lamphear, S. J. Streatfield, J. M. Jilka et al., “Delivery of subunit vaccines in maize seed,” Journal of Controlled Release, vol. 85, no. 1–3, pp. 169–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Muntz, “Deposition of storage proteins,” Plant Molecular Biology, vol. 38, no. 1-2, pp. 77–99, 1998. View at Scopus
  4. U. Fiedler, J. Phillips, O. Artsaenko, and U. Conrad, “Optimization of scFv antibody production in transgenic plants,” Immunotechnology, vol. 3, no. 3, pp. 205–216, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. U. Commandeur, R. Twyman, and R. Fischer, “The biosafety of molecular farming in plants,” AgBiotechNet, vol. 5, no. 110, pp. 1–9, 2003.
  6. M. P. Oria, B. R. Hamaker, J. D. Axtell, and C. P. Huang, “A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5065–5070, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. B. R. Hamaker, A. A. Mohamed, J. E. Habben, C. P. Huang, and B. A. Larkins, “Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method,” Cereal Chemistry, vol. 72, no. 6, pp. 583–588, 1995. View at Scopus
  8. I. Salinas, A. Pro, Y. Salinas et al., “Compositional variation amongst sorghum hybrids: effect of kafirin concentration on metabolizable energy,” Journal of Cereal Science, vol. 44, no. 3, pp. 342–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Kladnik, P. S. Chourey, D. R. Pring, and M. Dermastia, “Development of the endosperm of Sorghum bicolor during the endoreduplication-associated growth phase,” Journal of Cereal Science, vol. 43, no. 2, pp. 209–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Drakakaki, S. Marcel, E. Arcalis et al., “The intracellular fate of a recombinant protein is tissue dependent,” Plant Physiology, vol. 141, no. 2, pp. 578–586, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Lin, Y. G. Liu, X. P. Xu, and B. J. Li, “Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5962–5967, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. J. Chen, H. M. Zhou, J. Chen, and X. C. Wang, “A gateway-based platform for multigene plant transformation,” Plant Molecular Biology, vol. 62, no. 6, pp. 927–936, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Charrier, C. Scollan, S. Ross, E. Zubko, and P. Meyer, “Co-silencing of homologous transgenes in tobacco,” Molecular Breeding, vol. 6, no. 4, pp. 407–419, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Battraw and T. C. Hall, “Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and β-glucuronidase genes,” Theoretical and Applied Genetics, vol. 82, no. 2, pp. 161–168, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. A. H. Christensen, R. A. Sharrock, and P. H. Quail, “Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation,” Plant Molecular Biology, vol. 18, no. 4, pp. 675–689, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Y. Cheon, H. J. Kim, K. H. Oh et al., “Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis,” Transgenic Research, vol. 13, no. 6, pp. 541–549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Drakakaki, P. Christou, and E. Stoger, “Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds,” Transgenic Research, vol. 9, no. 6, pp. 445–452, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. H. W. Choi, P. G. Lemaux, and M. J. Cho, “Long-term stability of transgene expression driven by barley endosperm-specific hordein promoters in transgenic barley,” Plant Cell Reports, vol. 21, no. 11, pp. 1108–1120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Q. Qu and F. Takaiwa, “Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice,” Plant Biotechnology Journal, vol. 2, no. 2, pp. 113–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. P. R. Wiley, P. Tosi, A. Evrard, A. Lovegrove, H. D. Jones, and P. R. Shewry, “Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain,” Plant Molecular Biology, vol. 64, no. 1-2, pp. 125–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. Russell and M. E. Fromm, “Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice,” Transgenic Research, vol. 6, no. 2, pp. 157–168, 1997. View at Scopus
  22. R. T. DeRose, D. Begum, and T. C. Hall, “Analysis of kafirin promoter activity in transgenic tobacco seeds,” Plant Molecular Biology, vol. 32, no. 6, pp. 1029–1035, 1996. View at Scopus
  23. F. A. Defreitas, J. A. Yunes, M. J. Dasilva, P. Arruda, and A. Leite, “Structural characterization and promoter activity analysis of the gamma kafirin gene from sorghum,” Molecular & General Genetics, vol. 245, no. 2, pp. 177–186, 1994.
  24. A. Mishra, A. Tomar, S. Bansal, V. K. Khanna, and G. K. Garg, “Temporal and spatial expression analysis of gamma kafirin promoter from Sorghum (Sorghum bicolor L. moench) var. M 35-1,” Molecular Biology Reports, vol. 35, no. 2, pp. 81–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Furtado, R. J. Henry, and F. Takaiwa, “Comparison of promoters in transgenic rice,” Plant Biotechnology Journal, vol. 6, no. 7, pp. 679–693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C. N. Stewart and L. E. Via, “A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications.,” BioTechniques, vol. 14, no. 5, pp. 748–749, 1993. View at Scopus
  27. A. H. Christensen and P. H. Quail, “Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants,” Transgenic Research, vol. 5, no. 3, pp. 213–218, 1996. View at Scopus
  28. Y. Yon and M. Fried, “Precise gene fusion by PCR,” Nucleic Acids Research, vol. 17, no. 12, p. 4895, 1989. View at Scopus
  29. R. Heim and R. Y. Tsien, “Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer,” Current Biology, vol. 6, no. 2, pp. 178–182, 1996. View at Scopus
  30. G. H. Patterson, S. M. Knobel, W. D. Sharif, S. R. Kain, and D. W. Piston, “Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy,” Biophysical Journal, vol. 73, no. 5, pp. 2782–2790, 1997. View at Scopus
  31. F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977. View at Scopus
  32. J. J. Finer, P. Vain, M. W. Jones, and M. D. McMullen, “Development of the particle inflow gun for DNA delivery to plant cells,” Plant Cell Reports, vol. 11, no. 7, pp. 323–328, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Higo, Y. Ugawa, M. Iwamoto, and T. Korenaga, “Plant cis-acting regulatory DNA elements (PLACE) database: 1999,” Nucleic Acids Research, vol. 27, no. 1, pp. 297–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Emanuelsson, S. Brunak, G. von Heijne, and H. Nielsen, “Locating proteins in the cell using TargetP, SignalP and related tools,” Nature Protocols, vol. 2, no. 4, pp. 953–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Nielsen, S. Brunak, and G. Von Heijne, “Machine learning approaches for the prediction of signal peptides and other protein sorting signals,” Protein Engineering, vol. 12, no. 1, pp. 3–9, 1999. View at Scopus
  36. M. S. Thomas and R. B. Flavell, “Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin,” Plant Cell, vol. 2, no. 12, pp. 1171–1180, 1990. View at Scopus
  37. F. Norre, C. Peyrot, C. Garcia et al., “Powerful effect of an atypical bifactorial endosperm box from wheat HMWG-Dx5 promoter in maize endosperm,” Plant Molecular Biology, vol. 50, no. 4-5, pp. 699–712, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. R. T. Song, G. Segal, and J. Messing, “Expression of the sorghum 10-member kafirin gene cluster in maize endosperm,” Nucleic Acids Research, vol. 32, no. 22, p. e189, 2004. View at Scopus
  39. A. Boronat, M. C. Martínez, M. Reina, P. Puigdomènech, and J. Palau, “Isolation and sequencing of a 28 kD glutelin-2 gene from maize. common elements in the 5′ flanking regions among zein and glutelin genes,” Plant Science, vol. 47, no. 2, pp. 95–102, 1986. View at Scopus
  40. M. Kreis, B. G. Forde, S. Rahman, B. J. Miflin, and P. R. Shewry, “Molecular evolution of the seed storage proteins of barley, rye and wheat,” Journal of Molecular Biology, vol. 183, no. 3, pp. 499–502, 1985. View at Scopus
  41. T. Ueda, Z. Wang, N. Pham, and J. Messing, “Identification of a transcriptional activator-binding element in the 27- kilodalton zein promoter, the -300 element,” Molecular and Cellular Biology, vol. 14, no. 7, pp. 4350–4359, 1994. View at Scopus
  42. J. H. Xu and J. Messing, “Amplification of prolamin storage protein genes in different subfamilies of the Poaceae,” Theoretical and Applied Genetics, vol. 119, no. 8, pp. 1397–1412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. G. A. Thompson, R. S. Boston, L. A. Lyznik, T. K. Hodges, and B. A. Larkins, “Analysis of promoter activity from an α-zein gene 5′ flanking sequence in transient expression assays,” Plant Molecular Biology, vol. 15, no. 5, pp. 755–764, 1990. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Quayle, W. Hetz, and G. Feix, “Characterization of a maize endosperm culture expressing zein genes and its use in transient transformation assays,” Plant Cell Reports, vol. 9, no. 10, pp. 544–548, 1991. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Quayle and G. Feix, “Functional analysis of the -300 region of maize zein genes,” Molecular and General Genetics, vol. 231, no. 3, pp. 369–374, 1992. View at Scopus
  46. J. Vicente-Carbajosa, S. P. Moose, R. L. Parsons, and R. J. Schmidt, “A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 14, pp. 7685–7690, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Marzabal, P. K. Busk, M. D. Ludevid, and M. Torrent, “The bifactorial endosperm box of γ-zein gene: characterisation and function of the Pb3 and GZM cis-acting elements,” Plant Journal, vol. 16, no. 1, pp. 41–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. R. J. Schmidt, M. Ketudat, M. J. Aukerman, and G. Hoschek, “Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes,” Plant Cell, vol. 4, no. 6, pp. 689–700, 1992. View at Scopus
  49. J. R. Muth, M. Muller, S. Lohmer, F. Salamini, and R. D. Thompson, “The role of multiple binding sites in the activation of zein gene expression by Opaque-2,” Molecular & General Genetics, vol. 252, no. 6, pp. 723–732, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. J. A. Yunes, G. C. Neto, M. J. DaSilva, A. Leite, L. M. M. Ottoboni, and P. Arruda, “The transcriptional activator Opaque2 recognizes two different target sequences in the 22kD-like alpha-prolamin genes,” Plant Cell, vol. 6, no. 2, pp. 237–249, 1994. View at Publisher · View at Google Scholar · View at Scopus
  51. R. T. Song, V. Llaca, E. Linton, and J. Messing, “Sequence, regulation, and evolution of the maize 22-kD α zein gene family,” Genome Research, vol. 11, no. 11, pp. 1817–1825, 2001. View at Scopus
  52. R. T. DeRose, D. P. Ma, I. S. Kwon, S. E. Hasnain, R. C. Klassy, and T. C. Hall, “Characterization of the kafirin gene family from sorghum reveals extensive homology with zein from maize,” Plant Molecular Biology, vol. 12, no. 3, pp. 245–256, 1989. View at Publisher · View at Google Scholar · View at Scopus
  53. D. G. Muench, Y. Wu, S. J. Coughlan, and T. W. Okita, “Evidence for a cytoskeleton-associated binding site involved in prolamine mRNA localization to the protein bodies in rice endosperm tissue,” Plant Physiology, vol. 116, no. 2, pp. 559–569, 1998. View at Scopus
  54. G. Galili, C. Sengupta-Gopalan, and A. Ceriotti, “The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies,” Plant Molecular Biology, vol. 38, no. 1-2, pp. 1–29, 1998. View at Scopus