About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 758169, 7 pages
http://dx.doi.org/10.1155/2012/758169
Review Article

MicroRNAs and Induced Pluripotent Stem Cells for Human Disease Mouse Modeling

Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, MSB C512, Newark, NJ 07103, USA

Received 10 December 2011; Accepted 14 February 2012

Academic Editor: Monica Fedele

Copyright © 2012 Chingiz Underbayev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. L. Washington, M. A. Haendel, C. J. Mungall, M. Ashburner, M. Westerfield, and S. E. Lewis, “Linking human diseases to animal models using ontology-based phenotype annotation,” PLoS Biology, vol. 7, no. 11, Article ID e1000247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Bedell, N. A. Jenkins, and N. G. Copeland, “Mouse models of human disease. Part I: techniques and resources for genetic analysis in mice,” Genes and Development, vol. 11, no. 1, pp. 1–10, 1997. View at Scopus
  3. L. Hook, C. O'Brien, and T. Allsopp, “ES cell technology: an introduction to genetic manipulation, differentiation and therapeutic cloning,” Advanced Drug Delivery Reviews, vol. 57, no. 13, pp. 1904–1917, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Niwa, “Mouse ES cell culture system as a model of development,” Development Growth and Differentiation, vol. 52, no. 3, pp. 275–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Ohtsuka and S. Dalton, “Molecular and biological properties of pluripotent embryonic stem cells,” Gene Therapy, vol. 15, no. 2, pp. 74–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Bradley, M. Evans, M. H. Kaufman, and E. Robertson, “Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines,” Nature, vol. 309, no. 5965, pp. 255–256, 1984. View at Scopus
  7. E. Robertson, A. Bradley, M. Kuehn, and M. Evans, “Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector,” Nature, vol. 323, no. 6087, pp. 445–448, 1986. View at Scopus
  8. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, “Generation of mouse induced pluripotent stem cells without viral vectors,” Science, vol. 322, no. 5903, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Stadtfeld, M. Nagaya, J. Utikal, G. Weir, and K. Hochedlinger, “Induced pluripotent stem cells generated without viral integration,” Science, vol. 322, no. 5903, pp. 945–949, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Seki, S. Yuasa, M. Oda et al., “Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells,” Cell stem cell, vol. 7, no. 1, pp. 11–14, 2010. View at Scopus
  12. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Zou, M. L. Maeder, P. Mali et al., “Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells,” Cell Stem Cell, vol. 5, no. 1, pp. 97–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. I. Lai, W. Y. Wendy-Yeo, R. Ramasamy et al., “Advancements in reprogramming strategies for the generation of induced pluripotent stem cells,” Journal of Assisted Reproduction and Genetics, vol. 28, no. 4, pp. 291–301, 2011. View at Publisher · View at Google Scholar
  15. K. Takahashi, “Direct reprogramming 101,” Development Growth and Differentiation, vol. 52, no. 3, pp. 319–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Y. Zhao, W. Li, Z. Lv et al., “IPS cells produce viable mice through tetraploid complementation,” Nature, vol. 461, no. 7260, pp. 86–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Salerno, B. J. Scaglione, F. D. Coffman et al., “Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity,” Molecular Cancer Therapeutics, vol. 8, no. 9, pp. 2684–2692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Yao, B. Nashun, T. Zhou et al., “Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells,” Human Gene Therapy, vol. 23, no. 2, pp. 238–242, 2012. View at Publisher · View at Google Scholar
  19. E. X. Lee, D. H. Lam, C. Wu et al., “Glioma gene therapy using induced pluripotent stem cell derived neural stem cells,” Molecular Pharmaceutics, vol. 8, no. 5, pp. 1515–1524, 2011. View at Publisher · View at Google Scholar
  20. J. Hanna, M. Wernig, S. Markoulaki et al., “Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin,” Science, vol. 318, no. 5858, pp. 1920–1923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. T. Dimos, K. T. Rodolfa, K. K. Niakan et al., “Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons,” Science, vol. 321, no. 5893, pp. 1218–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. D. Ebert, J. Yu, F. F. Rose et al., “Induced pluripotent stem cells from a spinal muscular atrophy patient,” Nature, vol. 457, no. 7227, pp. 277–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. I. H. Park, N. Arora, H. Huo et al., “Disease-specific induced pluripotent stem cells,” Cell, vol. 134, no. 5, pp. 877–886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Soldner, D. Hockemeyer, C. Beard et al., “Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors,” Cell, vol. 136, no. 5, pp. 964–977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Ye, J. C. Chang, C. Lin, X. Sun, J. Yu, and Y. W. Kan, “Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 24, pp. 9826–9830, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Wernig, J. P. Zhao, J. Pruszak et al., “Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5856–5861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Zhou, J. Brown, A. Kanarek, J. Rajagopal, and D. A. Melton, “In vivo reprogramming of adult pancreatic exocrine cells to β-cells,” Nature, vol. 455, no. 7213, pp. 627–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. I. S. Behbahan, Y. Duan, A. Lam et al., “New approaches in the differentiation of human embryonic stem cells and induced pluripotent stem cells toward hepatocytes,” Stem Cell Reviews and Reports, vol. 7, no. 3, pp. 748–759, 2011. View at Publisher · View at Google Scholar
  29. S. Asgari, M. Moslem, K. Bagheri-Lankarani, B. Pournasr, M. Miryounesi, and H. Baharvand, “Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells,” Stem Cell Reviews and Reports. In press. View at Publisher · View at Google Scholar
  30. S. K. Mallanna and A. Rizzino, “Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells,” Developmental Biology, vol. 344, no. 1, pp. 16–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. T. M. Rana, “Illuminating the silence: understanding the structure and function of small RNAs,” Nature Reviews Molecular Cell Biology, vol. 8, no. 1, pp. 23–36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Melton, R. L. Judson, and R. Blelloch, “Opposing microRNA families regulate self-renewal in mouse embryonic stem cells,” Nature, vol. 463, no. 7281, pp. 621–626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Tay, J. Zhang, A. M. Thomson, B. Lim, and I. Rigoutsos, “MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation,” Nature, vol. 455, no. 7216, pp. 1124–1128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. M. S. Tay, W. L. Tam, Y. S. Ang et al., “MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1,” Stem Cells, vol. 26, no. 1, pp. 17–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates microRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Lee, K. Jeon, J. T. Lee, S. Kim, and V. N. Kim, “MicroRNA maturation: stepwise processing and subcellular localization,” EMBO Journal, vol. 21, no. 17, pp. 4663–4670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Zeng and B. R. Cullen, “Sequence requirements for micro RNA processing and function in human cells,” RNA, vol. 9, no. 1, pp. 112–123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. V. K. Gangaraju and H. Lin, “MicroRNAs: key regulators of stem cells,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 116–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Marson, S. S. Levine, M. F. Cole et al., “Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells,” Cell, vol. 134, no. 3, pp. 521–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. K. D. Wilson, S. Venkatasubrahmanyam, F. Jia, N. Sun, A. J. Butte, and J. C. Wu, “MicroRNA profiling of human-induced pluripotent stem cells,” Stem Cells and Development, vol. 18, no. 5, pp. 749–757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Wang, R. Medvid, C. Melton, R. Jaenisch, and R. Blelloch, “DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal,” Nature Genetics, vol. 39, no. 3, pp. 380–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Xu, T. Papagiannakopoulos, G. Pan, J. A. Thomson, and K. S. Kosik, “MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells,” Cell, vol. 137, no. 4, pp. 647–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. S. Yang, Z. Li, and T. M. Rana, “microRNAs modulate iPS cell generation,” RNA, vol. 17, no. 8, pp. 1451–1460, 2011. View at Publisher · View at Google Scholar
  44. K. N. Ivey, A. Muth, J. Arnold et al., “MicroRNA regulation of cell lineages in mouse and human embryonic stem cells,” Cell Stem Cell, vol. 2, no. 3, pp. 219–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Zhao, E. Samal, and D. Srivastava, “Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis,” Nature, vol. 436, no. 7048, pp. 214–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Anokye-Danso, C. M. Trivedi, D. Juhr et al., “Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency,” Cell Stem Cell, vol. 8, no. 4, pp. 376–388, 2011. View at Publisher · View at Google Scholar
  47. J. Ren, P. Jin, E. Wang, F. M. Marincola, and D. F. Stroncek, “MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells,” Journal of Translational Medicine, vol. 7, article 20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. L. R. Saunders, et al., “miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues,” Aging, vol. 2, no. 7, pp. 415–431, 2010.
  49. C. C. Lan, I. U. S. Leong, D. Lai, and D. R. Love, “Disease modeling by gene targeting using MicroRNAs,” Methods in Cell Biology, vol. 105, pp. 419–436, 2011. View at Publisher · View at Google Scholar
  50. L. Krenacs, A. W. Himmelmann, L. Quintanilla-Martinez et al., “Transcription factor B-cell-specific activator protein (BSAP) is differentially expressed in B cells and in subsets of B-cell lymphomas,” Blood, vol. 92, no. 4, pp. 1308–1316, 1998. View at Scopus
  51. E. Y. Chung, M. Dews, D. Cozma et al., “c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster,” Cancer Biology and Therapy, vol. 7, no. 11, pp. 1758–1764, 2008. View at Scopus
  52. P. H. Gunaratne, “Embryonic stem cell MicroRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells?” Current Stem Cell Research and Therapy, vol. 4, no. 3, pp. 168–177, 2009. View at Scopus