About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 761450, 9 pages
http://dx.doi.org/10.1155/2012/761450
Research Article

Attenuating Effect of Ginkgo biloba Leaves Extract on Liver Fibrosis Induced by Thioacetamide in Mice

Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia

Received 28 May 2012; Accepted 28 July 2012

Academic Editor: Y. James Kang

Copyright © 2012 Atef M. Al-Attar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Q. Liu, J. P. Yu, H. L. Chen, H. S. Luo, S. M. Chen, and H. G. Yu, “Therapeutic effects and molecular mechanisms of Ginkgo biloba Extract on liver fibrosis in rats,” The American Journal of Chinese Medicine, vol. 34, no. 1, pp. 99–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. W. X. Chen, Y. M. Li, C. H. Yu, W. M. Cai, M. Zheng, and F. Chen, “Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease,” World Journal of Gastroenterology, vol. 8, no. 2, pp. 379–381, 2002. View at Scopus
  3. D. W. Han, “Intestinal endotoxemia as a pathogenetic mechanism in liver failure,” World Journal of Gastroenterology, vol. 8, no. 6, pp. 961–965, 2002. View at Scopus
  4. L. Shen, J. G. Fan, Y. Shao et al., “Prevalence of nonalcoholic fatty liver among administrative officers in Shanghai: an epidemiological survey,” World Journal of Gastroenterology, vol. 9, no. 5, pp. 1106–1110, 2003. View at Scopus
  5. H. V. Vadi and R. A. Neal, “Microsomal activation of thioacetamide-S-oxide to a metabolite(s) that covalently binds to calf thymus DNA and other polynucleotides,” Chemico-Biological Interactions, vol. 35, no. 1, pp. 25–38, 1981. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Bruck, S. Weiss, A. Traister et al., “Induced hypothyroidism accelerates the regression of liver fibrosis in rats,” Journal of Gastroenterology and Hepatology, vol. 22, no. 12, pp. 2189–2194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Hasegawa, M. Ide, S. Takenaka, J. Yamate, and S. Tsuyama, “Urinary metabolic fingerprinting for thioacetamide-induced rat acute hepatic injury using fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS), with reference to detection of potential biomarkers for hepatotoxicity,” Toxicologic pathology, vol. 35, no. 4, pp. 570–575, 2007. View at Scopus
  8. R. D. Rekha, A. A. Amali, G. M. Her et al., “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology, vol. 243, no. 1-2, pp. 11–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Eroǧlu, S. Demirci, H. Akbulut, N. Sever, S. Demirer, and A. E. Ünal, “Effect of granulocyte-macrophage colony-stimulating factor on hepatic regeneration after 70% hepatectomy in normal and cirrhotic rats,” HPB, vol. 4, no. 2, pp. 67–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Kumar, G. S. Banu, P. V. Pappa, M. Sundararajan, and M. R. Pandian, “Hepatoprotective activity of Trianthema portulacastrum L. against paracetamol and thioacetamide intoxication in albino rats,” Journal of Ethnopharmacology, vol. 92, no. 1, pp. 37–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Gribilas, A. Zarros, A. Zira et al., “Involvement of hepatic stimulator substance in experimentally induced fibrosis and cirrhosis in the rat,” Digestive Diseases and Sciences, vol. 54, no. 11, pp. 2367–2376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. F. Aydin, Z. Küskü-Kiraz, S. Doǧru-Abbasoǧlu, M. Güllüoǧlu, M. Uysal, and N. Koçak-Toker, “Effect of carnosine against thioacetamide-induced liver cirrhosis in rat,” Peptides, vol. 31, no. 1, pp. 67–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. K. Tsai, Y. L. Lin, and Y. T. Huang, “Effects of salvianolic acids on oxidative stress and hepatic fibrosis in rats,” Toxicology and Applied Pharmacology, vol. 242, no. 2, pp. 155–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Al-Attar, “Hepatoprotective influence of vitamin C on thioacetamide-induced liver cirrhosis in Wistar male rats,” Journal of Pharmacology and Toxicology, vol. 6, no. 3, pp. 218–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Wang, J. W. Shin, M. K. Choi, H. G. Kim, and C. G. Son, “An herbal fruit, Amomum xanthoides, ameliorates thioacetamide-induced hepatic fibrosis in rat via antioxidative system,” Journal of Ethnopharmacology, vol. 135, no. 2, pp. 344–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. A. Barker and E. A. Smuckler, “Nonhepatic thioacetamide injury. I. Thymic cortical necrosis,” The American Journal of Pathology, vol. 71, no. 3, pp. 409–418, 1973. View at Scopus
  17. E. A. Barker and E. A. Smuckler, “Nonhepatic thioacetamide injury. II. The morphologic features of proximal renal tubular injury,” The American Journal of Pathology, vol. 74, no. 3, pp. 575–590, 1974. View at Scopus
  18. M. E. Caballero, J. Berlanga, D. Ramirez et al., “Epidermal growth factor reduces multiorgan failure induced by thioacetamide,” Gut, vol. 48, no. 1, pp. 34–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Ortega, M. I. Torres, M. I. Fernández, A. Rios, A. Sánchez-Pozo, and A. Gil, “Hepatotoxic agent thioacetamide induces biochemical and histological alterations in rat small intestine,” Digestive Diseases and Sciences, vol. 42, no. 8, pp. 1715–1723, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Al-Bader, T. C. Mathew, M. Khoursheed, S. Asfar, H. Al-Sayer, and H. M. Dashti, “Thioacetamide toxicity and the spleen: histological and biochemical analysis,” Anatomia, Histologia, Embryologia, vol. 29, no. 1, pp. 3–8, 2000. View at Scopus
  21. S. M. Latha, M. R. M. S. Pai, and P. K. Pai, “Thioacetamide toxicity and the lung: histological analysis,” Indian Journal of Physiology and Pharmacology, vol. 47, no. 4, pp. 476–478, 2003. View at Scopus
  22. V. S. Panda and S. R. Naik, “Evaluation of cardioprotective activity of Ginkgo biloba and Ocimum sanctum in rodents,” Alternative Medicine Review, vol. 14, no. 2, pp. 161–171, 2009. View at Scopus
  23. T. A. van Beek, E. Bombardelli, P. Morazzoni, and F. Peterlongo, “Ginkgo biloba L.,” Fitoterapia, vol. 69, no. 3, pp. 195–244, 1998. View at Scopus
  24. S. Jaracz, S. Malik, and K. Nakanishi, “Isolation of ginkgolides A, B, C, J and bilobalide from G. biloba extracts,” Phytochemistry, vol. 65, no. 21, pp. 2897–2902, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. B. S. Joshi and P. N. Kaul, “Alternative medicine: herbal drugs and their critical appraisal—part I,” Progress in Drug Research, vol. 56, pp. 1–76, 2001. View at Scopus
  26. B. J. Diamond, S. C. Shiflett, N. Feiwel et al., “Ginkgo biloba extract: mechanisms and clinical indications,” Archives of Physical Medicine and Rehabilitation, vol. 81, no. 5, pp. 668–678, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Pietri, E. Maurelli, K. Drieu, and M. Culcasi, “Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba extract (EGb 761),” Journal of Molecular and Cellular Cardiology, vol. 29, no. 2, pp. 733–742, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Barnes, B. Margaret, and D. M. Finlayson, “The seasonal changes in body weight, biochemical composition and oxygen uptake of two common boveoaractic cirripedes, Balanus balanoides and B. Balanus,” Journal of the Marine Biological Association of the United Kingdom, vol. 43, no. 1, pp. 185–211, 1963. View at Publisher · View at Google Scholar
  29. A. G. Gornall, C. J. Bardawill, and M. M. David, “Determination of serum proteins by means of the Biuret reaction,” The Journal of Biological Chemistry, vol. 177, no. 2, pp. 751–766, 1949. View at Scopus
  30. G. Entenman, “General procedures for separating lipid components of tissue,” Methods in Enzymology, vol. 3, pp. 299–317, 1957. View at Publisher · View at Google Scholar
  31. R. Bataller and D. A. Brenner, “Liver fibrosis,” The Journal of Clinical Investigation, vol. 115, no. 2, pp. 209–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Poynard, P. Mathurin, C. L. Lai et al., “A comparison of fibrosis progression in chronic liver diseases,” Journal of Hepatology, vol. 38, no. 3, pp. 257–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Bhat and M. Bhat, “Hepatic fibrosis: novel strategies in detection and therapy,” McGill Journal of Medicine, vol. 11, no. 1, pp. 38–40, 2008. View at Scopus
  34. A. I. Mir, B. Kumar, S. A. Tasduq, D. K. Gupta, S. Bhardwaj, and R. K. Johri, “Reversal of hepatotoxin-induced pre-fibrogenic events by Emblica officinalis—a histological study,” Indian Journal of Experimental Biology, vol. 45, no. 7, pp. 626–629, 2007. View at Scopus
  35. R. R. Guerra, M. R. Trotta, O. M. Parra et al., “Modulation of extracellular matrix by nutritional hepatotrophic factors in thioacetamide-induced liver cirrhosis in the rat,” Brazilian Journal of Medical and Biological Research, vol. 42, no. 11, pp. 1027–1034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. B. Wu, H. R. Chuang, L. C. Yang, and W. C. Lin, “A standardized aqueous extract of Anoectochilus formosanus ameliorated thioacetamide-induced liver fibrosis in mice: the role of Kupffer cells,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 4, pp. 781–787, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. F. A. Kadir, F. Othman, M. A. Abdulla, F. Hussan, and P. Hassandarvish, “Effect of Tinospora crispa on thioacetamide-induced liver cirrhosis in rats,” Indian Journal of Pharmacology, vol. 43, no. 1, pp. 64–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. J. F. Li, B. C. Chen, D. D. Lai et al., “Soy isoflavone delays the progression of thioacetamide-induced liver fibrosis in rats,” Scandinavian Journal of Gastroenterology, vol. 46, no. 3, pp. 341–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. C. Kew, “Serum aminotransferase concentration as evidence of hepatocellular damage,” The Lancet, vol. 355, no. 9204, pp. 591–592, 2000. View at Scopus
  40. B. Yogalakshmi, P. Viswanathan, and C. V. Anuradha, “Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats,” Toxicology, vol. 268, no. 3, pp. 204–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. N. P. Foo, S. H. Lin, Y. H. Lee, M. J. Wu, and Y. J. Wang, “α-lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-β,” Toxicology, vol. 282, no. 1-2, pp. 39–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. P. N. Trennery and R. H. Waring, “Early changes in thioacetamide-induced liver damage,” Toxicology Letters, vol. 19, no. 3, pp. 299–307, 1983. View at Scopus
  43. M. Galisteo, A. Suárez, M. P. Montilla, M. I. Fernandez, A. Gil, and M. C. Navarro, “Protective effects of Rosmarinus tomentosus ethanol extract on thioacetamide-induced liver cirrhosis in rats,” Phytomedicine, vol. 13, no. 1-2, pp. 101–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. N. K. Jain and A. K. Singhai, “Protective effects of Phyllanthus acidus (L.) Skeels leaf extracts on acetaminophen and thioacetamide induced hepatic injuries in Wistar rats,” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 6, pp. 470–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. M. W. Andersen, N. R. Ballal, I. L. Goldknopf, and H. Busch, “Protein A24 lyase activity in nucleoli of thioacetamide-treated rat liver releases histone 2A and ubiquitin from conjugated protein A24,” Biochemistry, vol. 20, no. 5, pp. 1100–1104, 1981. View at Scopus
  46. Y. T. Kruszynska and N. McIntyre, “Oxford textbook of clinical hepatology,” in Carbohydrate Metabolism, N. McIntyre, P. J. Benhamou, J. Bircher, M. Rizzetto, and J. Rodes, Eds., pp. 129–143, Oxford University Press, New York, NY, USA, 1991.
  47. L. Favari and V. Perez-Alvarez, “Comparative effects of colchicine and silymarin on CCl4-chronic liver damage in rats,” Archives of Medical Research, vol. 28, no. 1, pp. 11–17, 1997. View at Scopus
  48. P. Muriel and Y. Escobar, “Kupffer cells are responsible for liver cirrhosis induced by carbon tetrachloride,” Journal of Applied Toxicology, vol. 23, no. 2, pp. 103–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Muriel, E. Fernández-Martínez, V. Pérez-Álvarez et al., “Thalidomide ameliorates carbon tetrachloride induced cirrhosis in the rat,” European Journal of Gastroenterology and Hepatology, vol. 15, no. 9, pp. 951–957, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. M. G. Moreno, E. Chávez, L. R. Aldaba-Muruato et al., “Coffee prevents CCl4-induced liver cirrhosis in the rat,” Hepatology International, vol. 5, no. 3, pp. 857–863, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. O. M. Ahmed, H. Abdel Hamid, M. Bastway, and N. A. Hasona, “Antihyperglycemic effects of Plantago Ispaghula seeds aqueous extract in diabetic and hypercholesterolemic rats,” Journal of the Egyptian German Society of Zoology, vol. 51, pp. 371–393, 2006.
  52. B. K. Tripathi, S. Srivastava, R. Rastogi, D. Raina, V. J. Ram, and A. K. Srivastava, “Hepatoprotection by 3-bromo-6-(4-chlorophenyl)-4-methylthio-2H-pyran-2-one against experimentally induced liver injury in rats,” Acta Pharmaceutica, vol. 53, no. 2, pp. 91–100, 2003. View at Scopus
  53. A. A. A. Khalaf, M. E. M. Mekawy, M. S. Moawad, and A. M. Ahmed, “Comparative study on the protective effect of some antioxidants against CCl4 hepatotoxicity in rats,” Egyptian Journal of Natural Toxins, vol. 6, no. 1, pp. 59–82, 2009.
  54. R. S. A. Ismail, A. A. A. El-Megeid, and A. R. Abdel-Moemin, “Carbon tetrachloride-induced liver disease in rats: the potential effect of supplement oils with vitamins E and C on the nutritional status,” GMS German Medical Science, vol. 7, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Z. Mansour and H. El-Kabany, “Effects of Fructus Piperis Longi extract on fibrotic liver of gamma-irradiated rats,” Chinese Medicine, vol. 4, article 2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. K. Kantah, R. Kobayashi, J. Sollano et al., “Hepatoprotective activity of a phytotherapeutic formula on thioacetamide-induced liver fibrosis model,” Acta Bio Medica, vol. 82, no. 1, pp. 82–89, 2011.
  57. G. Poli, “Pathogenesis of liver fibrosis: role of oxidative stress,” Molecular Aspects of Medicine, vol. 21, no. 3, pp. 49–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Tahan, R. Ozaras, B. Canbakan et al., “Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats,” Journal of Pineal Research, vol. 37, no. 2, pp. 78–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. W. T. Johnson, L. A. K. Johnson, and H. C. Lukaski, “Serum superoxide dismutase 3 (extracellular superoxide dismutase) activity is a sensitive indicator of Cu status in rats,” The Journal of Nutritional Biochemistry, vol. 16, no. 11, pp. 682–692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Pushpakiran, K. Mahalakshmi, and C. V. Anuradha, “Taurine restores ethanol-induced depletion of antioxidants and attenuates oxidative stress in rat tissues,” Amino Acids, vol. 27, no. 1, pp. 91–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Kojima-Yuasa, K. Umeda, T. Ohkita, D. O. Kennedy, S. Nishiguchi, and I. Matsui-Yuasa, “Role of reactive oxygen species in zinc deficiency-induced hepatic stellate cell activation,” Free Radical Biology and Medicine, vol. 39, no. 5, pp. 631–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Mendoza-Cózatl, H. Loza-Tavera, A. Hernández-Navarro, and R. Moreno-Sánchez, “Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants,” FEMS Microbiology Reviews, vol. 29, no. 4, pp. 653–671, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. N. H. P. Cnubben, I. M. C. M. Rietjens, H. Wortelboer, J. van Zanden, and P. J. van Bladeren, “The interplay of glutathione-related processes in antioxidant defense,” Environmental Toxicology and Pharmacology, vol. 10, no. 4, pp. 141–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. O. I. Aruoma, B. Halliwell, B. M. Hoey, and J. Butler, “The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid,” Free Radical Biology and Medicine, vol. 6, no. 6, pp. 593–597, 1989. View at Scopus
  65. D. S. Boehme, K. R. Maples, and R. F. Henderson, “Glutathione release by pulmonary alveolar macrophages in response to particles in vitro,” Toxicology Letters, vol. 60, no. 1, pp. 53–60, 1992. View at Scopus
  66. L. J. Smith, M. Houston, and J. Anderson, “Increased levels of glutathione in bronchoalveolar lavage fluid from patients with asthma,” American Review of Respiratory Disease, vol. 147, no. 6, part 1, pp. 1461–1464, 1993. View at Scopus
  67. B. M. Lomaestro and M. Malone, “Glutathione in health and disease: pharmacotherapeutic issues,” Annals of Pharmacotherapy, vol. 29, no. 12, pp. 1263–1273, 1995. View at Scopus
  68. W. Dröge, A. Gross, V. Hack et al., “Role of cysteine and glutathione in HIV infection and cancer cachexia: therapeutic intervention with N-acetylcysteine,” Advances in Pharmacology, vol. 38, pp. 581–600, 1997. View at Scopus
  69. K. A. Shenoy, S. N. Somayaji, and K. L. Bairy, “Hepatoprotective effects of Ginkgo biloba against carbon tetrachloride induced hepatic injury in rats,” Indian Journal of Pharmacology, vol. 33, no. 4, pp. 260–266, 2001. View at Scopus
  70. G. Sener, L. Kabasakal, M. Yüksel, N. Gedik, and Ý. Alican, “Hepatic fibrosis in biliary-obstructed rats is prevented by Ginkgo biloba treatment,” World Journal of Gastroenterology, vol. 11, no. 35, pp. 5444–5449, 2005. View at Scopus
  71. Y. J. Luo, J. P. Yu, Z. H. Shi, and L. Wang, “Ginkgo biloba extract reverses CCl4-induced liver fibrosis in rats,” World Journal of Gastroenterology, vol. 10, no. 7, pp. 1037–1042, 2004. View at Scopus
  72. M. M. M. Harputluoglu, U. Demirel, H. Ciralik et al., “Protective effects of Gingko biloba on thioacetamide-induced fulminant hepatic failure in rats,” Human and Experimental Toxicology, vol. 25, no. 12, pp. 705–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. C. F. Zhang, C. Q. Zhang, Y. H. Zhu, J. Wang, H. W. Xu, and W. H. Ren, “Ginkgo biloba extract EGb 761 alleviates hepatic fibrosis and sinusoidal microcirculation disturbance in patients with chronic hepatitis B,” Gastroenterology Research, vol. 1, pp. 20–28, 2008.