About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 783739, 8 pages
http://dx.doi.org/10.1155/2012/783739
Review Article

PET/CT in the Staging of the Non-Small-Cell Lung Cancer

Fangfang Chao1,2,3,4 and Hong Zhang1,2,3,4

1Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
2Zhejiang University Medical PET Center, Zhejiang University, Hangzhou 310009, China
3Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, China
4Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou 310009, China

Received 1 January 2012; Accepted 20 January 2012

Academic Editor: Mei Tian

Copyright © 2012 Fangfang Chao and Hong Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Morgensztern, B. Goodgame, M. Q. Baggstrom, F. Gao, and R. Govindan, “The effect of FDG-PET on the stage distribution of non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 3, no. 2, pp. 135–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA: A Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. C. Steinert, “PET and PET-CT of lung cancer,” Methods in Molecular Biology, vol. 727, pp. 33–51, 2011. View at Publisher · View at Google Scholar
  4. W. De Wever, J. Coolen, and J. A. Verschakelen, “Integrated PET/CT and cancer imaging,” JBR-BTR, vol. 92, no. 1, pp. 13–19, 2009. View at Scopus
  5. S. Y. Low, P. Eng, G. H. W. Keng, and D. C. E. Ng, “Positron emission tomography with CT in the evaluation of non-small cell lung cancer in populations with a high prevalence of tuberculosis,” Respirology, vol. 11, no. 1, pp. 84–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. McQuade, D. J. Rowland, J. S. Lewis, and M. J. Welch, “Positron-emitting isotopes produced on biomedical cyclotrons,” Current Medicinal Chemistry, vol. 12, no. 7, pp. 807–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. W. V. Vogel, W. J. Oyen, J. O. Barentsz, J. H. Kaanders, and F. H. Corstens, “PET/CT: panacea, redundancy, or something in between?” Journal of Nuclear Medicine, vol. 45, supplement 1, pp. 15S–24S, 2004. View at Scopus
  8. Y. Y. Yau, W. S. Chan, Y. M. Tam et al., “Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error?” Journal of Nuclear Medicine, vol. 46, no. 2, pp. 283–291, 2005. View at Scopus
  9. S. Kligerman and S. Digumarthy, “Staging of non-small cell lung cancer using integrated PET/CT,” American Journal of Roentgenology, vol. 193, no. 5, pp. 1203–1211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Tsim, C. A. O'Dowd, R. Milroy, and S. Davidson, “Staging of non-small cell lung cancer (NSCLC): a review,” Respiratory Medicine, vol. 104, no. 12, pp. 1767–1774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Rami-Porta, J. J. Crowley, and P. Goldstraw, “The revised TNM staging system for lung cancer,” Annals of Thoracic and Cardiovascular Surgery, vol. 15, no. 1, pp. 4–9, 2009. View at Scopus
  12. L. L. Carr, J. H. Finigan, and J. A. Kern, “Evaluation and treatment of patients with non-small cell lung cancer,” Medical Clinics of North America, vol. 95, no. 6, pp. 1041–1054, 2011. View at Publisher · View at Google Scholar
  13. D. S. Ettinger, W. Akerley, G. Bepler et al., “Non-small cell lung cancer: clinical practice guidelines in oncology,” Journal of the National Comprehensive Cancer Network, vol. 8, no. 7, pp. 740–801, 2010. View at Scopus
  14. J. P. C. Grutters, A. G. H. Kessels, M. Pijls-Johannesma, D. De Ruysscher, M. A. Joore, and P. Lambin, “Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis,” Radiotherapy and Oncology, vol. 95, no. 1, pp. 32–40, 2010. View at Publisher · View at Google Scholar
  15. R. Timmerman, R. Paulus, J. Galvin et al., “Stereotactic body radiation therapy for inoperable early stage lung cancer,” JAMA, vol. 303, no. 11, pp. 1070–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Lardinois, W. Weder, T. F. Hany et al., “Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography,” The New England Journal of Medicine, vol. 348, no. 25, pp. 2500–2507, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. B. M. Fischer and J. Mortensen, “The future in diagnosis and staging of lung cancer: positron emission tomography,” Respiration, vol. 73, no. 3, pp. 267–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Wever, S. Ceyssens, L. Mortelmans et al., “Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT,” European Radiology, vol. 17, no. 1, pp. 23–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. W. R. Webb, C. Gatsonis, E. A. Zerhouni et al., “CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group,” Radiology, vol. 178, no. 3, pp. 705–713, 1991. View at Scopus
  20. S. S. Shim, K. S. Lee, B. T. Kim et al., “Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging,” Radiology, vol. 236, no. 3, pp. 1011–1019, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Pauls, A. K. Buck, K. Hohl et al., “Improved non-invasive T-Staging in non-small cell lung cancer by integrated 18F-FDG PET/CT,” NuklearMedizin, vol. 46, no. 1, pp. 9–14, 2007. View at Scopus
  22. J. A. Verschakelen, W. De Wever, and J. Bogaert, “Role of computed tomography in lung cancer staging,” Current Opinion in Pulmonary Medicine, vol. 10, no. 4, pp. 248–255, 2004. View at Scopus
  23. K. M. Kerr, D. Lamb, C. G. Wathen, W. S. Walker, and N. J. Douglas, “Pathological assessment of mediastinal lymph nodes in lung cancer: implications for non-invasive mediastinal staging,” Thorax, vol. 47, no. 5, pp. 337–341, 1992. View at Scopus
  24. N. C. Gupta, W. J. Tamim, G. G. Graeber, H. A. Bishop, and G. R. Hobbs, “Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging,” Chest, vol. 120, no. 2, pp. 521–527, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. G. E. Darling, D. E. Maziak, R. I. Inculet et al., “Positron emission tomography-computed tomography compared with invasive mediastinal staging in non-small cell lung cancer: results of mediastinal staging in the early lung positron emission tomography trial,” Journal of Thoracic Oncology, vol. 6, no. 8, pp. 1367–1372, 2011. View at Publisher · View at Google Scholar
  26. T. Y. Jeon, K. S. Lee, C. A. Yi et al., “Incremental value of PET/CT over CT for mediastinal nodal staging of non-small cell lung cancer: comparison between patients with and without idiopathic pulmonary fibrosis,” American Journal of Roentgenology, vol. 195, no. 2, pp. 370–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Billé, E. Pelosi, A. Skanjeti et al., “Preoperative intrathoracic lymph node staging in patients with non-small-cell lung cancer: accuracy of integrated positron emission tomography and computed tomography,” European Journal of Cardio-Thoracic Surgery, vol. 36, no. 3, pp. 440–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B.-J. Liu, J.-C. Dong, C.-Q. Xu et al., “Accuracy of 18F-FDG PET/CT for lymph node staging in non-small-cell lung cancers,” Chinese Medical Journal, vol. 122, no. 15, pp. 1749–1754, 2009. View at Publisher · View at Google Scholar
  29. W. F. Yang, G. Z. Tan, Z. Fu, and J. M. Yu, “[Evaluation of the diagnostic value of (18)F-FDG PET-CT and enhanced CT for staging of lymph node metastasis in non-small cell lung cancer],” Chinese Journal of Oncology, vol. 31, no. 12, pp. 925–928, 2009. View at Scopus
  30. K. G. Tournoy, S. Maddens, R. Gosselin, G. Van Maele, J. P. Van Meerbeeck, and A. Kelles, “Integrated FDG-PET/CT does not make invasive staging of the intrathoracic lymph nodes in non-small cell lung cancer redundant: a prospective study,” Thorax, vol. 62, no. 8, pp. 696–701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. C. A. Yi, K. S. Lee, B. T. Kim et al., “Efficacy of helical dynamic CT versus integrated PET/CT for detection of mediastinal nodal metastasis in non-small cell lung cancer,” American Journal of Roentgenology, vol. 188, no. 2, pp. 318–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Perigaud, B. Bridji, J. C. Roussel et al., “Prospective preoperative mediastinal lymph node staging by integrated positron emission tomography-computerised tomography in patients with non-small-cell lung cancer,” European Journal of Cardio-Thoracic Surgery, vol. 36, no. 4, pp. 731–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Metin, N. Citak, A. Sayar et al., “The role of extended cervical mediastinoscopy in staging of non-small cell lung cancer of the left lung and a comparison with integrated positron emission tomography and computed tomography: does integrated positron emission tomography and computed tomography reduce the need for invasive procedures?” Journal of Thoracic Oncology, vol. 6, no. 10, pp. 1713–1719, 2011. View at Publisher · View at Google Scholar
  34. L. E. Quint, S. Tummala, L. J. Brisson et al., “Distribution of distant metastases from newly diagnosed non-small cell lung cancer,” Annals of Thoracic Surgery, vol. 62, no. 1, pp. 246–250, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. M. T. Truong, C. Viswanathan, and J. J. Erasmus, “Positron emission tomography/computed tomography in lung cancer staging, prognosis, and assessment of therapeutic response,” Journal of Thoracic Imaging, vol. 26, no. 2, pp. 132–146, 2011. View at Publisher · View at Google Scholar
  36. A. V. Taira, R. J. Herfkens, S. S. Gambhir, and A. Quon, “Detection of bone metastases: assessment of integrated FDG PET/CT imaging,” Radiology, vol. 243, no. 1, pp. 204–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Heinz-Peer, S. Hönigschnabl, B. Schneider, B. Niederle, K. Kaserer, and G. Lechner, “Characterization of adrenal masses using MR imaging with histopathologic correlation,” American Journal of Roentgenology, vol. 173, no. 1, pp. 15–22, 1999. View at Scopus
  38. S. Jana, T. Zhang, D. M. Milstein, C. R. Isasi, and M. D. Blaufox, “FDG-PET and CT characterization of adrenal lesions in cancer patients,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 1, pp. 29–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. S. Yon, S. L. Kyung, B. T. Kim et al., “18F-FDG PET versus 18F-FDG PET/CT for adrenal gland lesion characterization: a comparison of diagnostic efficacy in lung cancer patients,” Korean Journal of Radiology, vol. 9, no. 1, pp. 19–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Ansquer, S. Scigliano, E. Mirallié et al., “18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 9, pp. 1669–1678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Yun, W. Kim, N. Alnafisi, L. Lacorte, S. Jang, and A. Alavi, “18F-FDG PET in characterizing adrenal lesions detected on CT or MRI,” Journal of Nuclear Medicine, vol. 42, no. 12, pp. 1795–1799, 2001. View at Scopus
  42. M. Perri, P. Erba, D. Volterrani et al., “Adrenal masses in patients with cancer: PET/CT characterization with combined CT histogram and standardized uptake value PET analysis,” American Journal of Roentgenology, vol. 197, no. 1, pp. 209–216, 2011. View at Publisher · View at Google Scholar
  43. S. Chong, S. L. Kyung, Y. K. Ha et al., “Integrated PET-CT for the characterization of adrenal gland lesions in cancer patients: diagnostic efficacy and interpretation pitfalls,” Radiographics, vol. 26, no. 6, pp. 1811–1824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Goldstraw, J. Crowley, K. Chansky et al., “The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours,” Journal of Thoracic Oncology, vol. 2, no. 8, pp. 706–714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Salskov, V. S. Tammisetti, J. Grierson, and H. Vesselle, “FLT: measuring Tumor Cell Proliferation In Vivo With Positron Emission Tomography and 3-Deoxy-3-[18F]Fluorothymidine,” Seminars in Nuclear Medicine, vol. 37, no. 6, pp. 429–439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Fischer, U. Lassen, J. Mortensen et al., “Preoperative staging of lung cancer with combined PET-CT,” The New England Journal of Medicine, vol. 361, no. 1, pp. 32–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. H. van Tinteren, O. S. Hoekstra, E. F. Smit et al., “Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial,” The Lancet, vol. 359, no. 9315, pp. 1388–1392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. R. C. Viney, M. J. Boyer, M. T. King et al., “Randomized controlled trial of the role of positron emission tomography in the management of stage I and II non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 22, no. 12, pp. 2357–2362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Fontaine, J. McShane, M. Carr et al., “Does positron emission tomography scanning improve survival in patients undergoing potentially curative lung resections for non-small-cell lung cancer?” European Journal of Cardio-Thoracic Surgery, vol. 40, no. 3, pp. 642–646, 2011. View at Publisher · View at Google Scholar
  50. A. K. Buck, K. Herrmann, T. Stargardt, T. Dechow, B. J. Krause, and J. Schreyögg, “Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches,” Journal of Nuclear Medicine Technology, vol. 38, no. 1, pp. 6–17, 2010. View at Publisher · View at Google Scholar
  51. T. L. Allen, A. T. K. Kendi, M. O. Mitiek, and M. A. Maddaus, “Combined contrast-enhanced computed tomography and 18-fluoro-2-deoxy-D-glucose-positron emission tomography in the diagnosis and staging of non-small cell lung cancer,” Seminars in Thoracic and Cardiovascular Surgery, vol. 23, no. 1, pp. 43–50, 2011. View at Publisher · View at Google Scholar
  52. A. Devaraj, G. J. R. Cook, and D. M. Hansell, “PET/CT in non-small cell lung cancer staging-promises and problems,” Clinical Radiology, vol. 62, no. 2, pp. 97–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. J. S. Sloka, P. D. Hollett, and M. Mathews, “Cost-effectiveness of positron emission tomography for non-small cell lung carcinoma in Canada,” Medical Science Monitor, vol. 10, no. 5, pp. MT73–MT80, 2004. View at Scopus
  54. A. K. Buck, K. Herrmann, and J. Schreyögg, “PET/CT for staging lung cancer: costly or cost-saving?” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 5, pp. 799–801, 2011. View at Publisher · View at Google Scholar
  55. J. Schreyögg, J. Weller, T. Stargardt et al., “Cost-effectiveness of hybrid PET/CT for staging of non-small cell lung cancer,” Journal of Nuclear Medicine, vol. 51, no. 11, pp. 1668–1675, 2010. View at Publisher · View at Google Scholar
  56. R. Søgaard, B. M. B. Fischer, J. Mortensen, L. Højgaard, and U. Lassen, “Preoperative staging of lung cancer with PET/CT: cost-effectiveness evaluation alongside a randomized controlled trial,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 5, pp. 802–809, 2011. View at Publisher · View at Google Scholar
  57. M. D. Gilman, A. J. Fischman, V. Krishnasetty, E. F. Halpern, and S. L. Aquino, “Optimal CT breathing protocol for combined thoracic PET/CT,” American Journal of Roentgenology, vol. 187, no. 5, pp. 1357–1360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Cohade, M. Osman, L. T. Marshall, and R. L. Wahl, “PET-CT: accuracy of PET and CT spatial registration of lung lesions,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 30, no. 5, pp. 721–726, 2003. View at Scopus
  59. M. Okada, T. Shimono, Y. Komeya et al., “Adrenal masses: the value of additional fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) in differentiating between benign and malignant lesions,” Annals of Nuclear Medicine, vol. 23, no. 4, pp. 349–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. T. F. Hany, J. Heuberger, and G. K. von Schulthess, “Iatrogenic FDG foci in the lungs: a pitfall of PET image interpretation,” European Radiology, vol. 13, no. 9, pp. 2122–2127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. S.-J. Kim, Y.-K. Kim, I. J. Kim, Y. D. Kim, and M. K. Lee, “Limited predictive value of dual-time-point F-18 FDG PET/CT for evaluation of pathologic N1 status in NSCLC patients,” Clinical Nuclear Medicine, vol. 36, no. 6, pp. 434–439, 2011. View at Publisher · View at Google Scholar