About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 803930, 7 pages
http://dx.doi.org/10.1155/2012/803930
Research Article

A Modified Technique for Culturing Primary Fetal Rat Cortical Neurons

Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 GuangZhou Road, GuangDong, GuangZhou 510515, China

Received 3 August 2012; Revised 30 September 2012; Accepted 30 September 2012

Academic Editor: Michael D. Coleman

Copyright © 2012 Sui-Yi Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Fath, Y. D. Ke, P. Gunning, J. Götz, and L. M. Ittner, “Primary support cultures of hippocampal and substantia nigra neurons,” Nature Protocols, vol. 4, no. 1, pp. 78–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C.-Y. Yuan, G.-S. W. Hsu, and Y.-J. Lee, “Aluminum alters NMDA receptor 1A and 2A/B expression on neonatal hippocampal neurons in rats,” Journal of Biomedical Science, vol. 18, p. 81, 2011. View at Publisher · View at Google Scholar
  3. C. Contreras-Jurado and A. Pascual, “Thyroid hormone regulation of APP, (beta-amyloid precursor protein) gene expression in brain and brain cultured cells,” Neurochemistry International, vol. 60, no. 5, pp. 484–487, 2012. View at Publisher · View at Google Scholar
  4. Q. Jiang, Y. W. Jiang, J. M. Wang, J. Qin, and X. R. Wu, “An improved method for primary culture of rat cortical neuron and cell identification,” Journal of Peking University, vol. 41, no. 2, pp. 212–216, 2009. View at Scopus
  5. H. Koito and J. Li, “Preparation of rat brain aggregate cultures for neuron and glia development studies,” Journal of Visualized Experiments, e1304, no. 31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Geissler and A. Faissner, “A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays,” Journal of Neuroscience Methods, vol. 204, no. 2, pp. 262–272, 2012. View at Publisher · View at Google Scholar
  7. I. Ullah, N. Ullah, M. Imran Naseer, et al., “Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons,” BMC Neuroscience, vol. 13, article 11, 2012. View at Publisher · View at Google Scholar
  8. W.-S. Chen, C. Y. Yueh, Y. A. Huang, and E. Hwang, “An inverted method for culturing dissociated mouse hippocampal neurons,” Neuroscience Research, vol. 70, no. 1, pp. 118–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Harris, H. Lee, C. T. Tu, D. Cribbs, C. Cotman, and N. L. Jeon, “Preparing e18 cortical rat neurons for compartmentalization in a microfluidic device,” Journal of Visualized Experiments, 305, no. 8, 2007. View at Scopus
  10. Y. Nakatsu, Y. Kotake, K. Komasaka et al., “Glutamate excitotoxicity is involved in cell death caused by tributyltin in cultured rat cortical neurons,” Toxicological Sciences, vol. 89, no. 1, pp. 235–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. E. V. Jones, D. Cook, and K. K. Murai, “A neuron-astrocyte co-culture system to investigate astrocyte-secreted factors in mouse neuronal development,” Methods in Molecular Biology, vol. 814, part 4, pp. 341–352, 2012. View at Publisher · View at Google Scholar
  12. S. Kaech and G. Banker, “Culturing hippocampal neurons,” Nature Protocols, vol. 1, no. 5, pp. 2406–2415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Kaminuma, Y. Suzuki, K. Shirai et al., “Effectiveness of carbon-ion beams for apoptosis induction in rat primary immature hippocampal neurons,” Journal of Radiation Research, vol. 51, no. 6, pp. 627–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Majd, A. Zarifkar, K. Rastegar, and M. A. Takhshid, “Culturing adult rat hippocampal neurons with long-interval changing media,” Iranian Biomedical Journal, vol. 12, no. 2, pp. 101–107, 2008. View at Scopus
  15. H. Yang, R. Cong, L. Na, G. Ju, and S. W. You, “Long-term primary culture of highly-pure rat embryonic hippocampal neurons of low-density,” Neurochemical Research, vol. 35, no. 9, pp. 1333–1342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Shimizu, A. Abt, and O. Meucci, “Bilaminar co-culture of primary rat cortical neurons and glia,” Journal of Visualized Experiments, e3257, no. 57, 2011. View at Publisher · View at Google Scholar
  17. M. A. Deli, C. S. Ábrahám, Y. Kataoka, and M. Niwa, “Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology,” Cellular and Molecular Neurobiology, vol. 25, no. 1, pp. 59–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Meberg and M. W. Miller, “Culturing hippocampal and cortical neurons,” Methods in Cell Biology, vol. 2003, no. 71, pp. 111–127, 2003. View at Scopus
  19. A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, “A microfluidic culture platform for CNS axonal injury, regeneration and transport,” Nature Methods, vol. 2, no. 8, pp. 599–605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. W. Park, B. Vahidi, A. M. Taylor, S. W. Rhee, and N. L. Jeon, “Microfluidic culture platform for neuroscience research,” Nature Protocols, vol. 1, no. 4, pp. 2128–2136, 2006. View at Publisher · View at Google Scholar · View at Scopus