About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 813894, 11 pages
http://dx.doi.org/10.1155/2012/813894
Research Article

Lim Mineralization Protein 3 Induces the Osteogenic Differentiation of Human Amniotic Fluid Stromal Cells through Kruppel-Like Factor-4 Downregulation and Further Bone-Specific Gene Expression

1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
2Institute of Medical Genetics, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
3Institut National de la Santé et de la Recherche Medicale, 101 Rue de Tolbiac, 75654 Paris Cedex 13, France
4Institut Cochin, Université Paris Descartes, Sorbonne Paris Descartes, CNRS (UMR 8104), Paris, France
5Department of Orthopaedics, Università Cattolica del Sacro Cuore, L.go Gemelli 8, 00168 Rome, Italy
6Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 427 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
7Department of Metabolism and Aging, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
8Department of Surgery, Rangos Research Center, University of Pittsburgh 530 45th Street, Pittsburgh, PA 15201, USA
9Latium Musculoskeletal Tissue Bank, L.go F. Vito 1, Rome, Italy

Received 23 January 2012; Revised 19 April 2012; Accepted 30 April 2012

Academic Editor: Thomas Lufkin

Copyright © 2012 Marta Barba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Lattanzi, C. Parrilla, A. Fetoni et al., “Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models,” Gene Therapy, vol. 15, no. 19, pp. 1330–1343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Parrilla, W. Lattanzi, A. R. Fetoni, F. Bussu, E. Pola, and G. Paludetti, “Ex vivo gene therapy using autologous dermal fibroblasts expressing hLMP3 for rat mandibular bone regeneration,” Head and Neck, vol. 32, no. 3, pp. 310–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Saulnier, W. Lattanzi, M. A. Puglisi et al., “Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage,” European Review for Medical and Pharmacological Sciences, vol. 13, supplement 1, pp. 71–78, 2009. View at Scopus
  4. R. F. Pereira, K. W. Halford, M. D. O'Hara et al., “Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4857–4861, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Woodbury, E. J. Schwarz, D. J. Prockop, and I. B. Black, “Adult rat and human bone marrow stromal cells differentiate into neurons,” Journal of Neuroscience Research, vol. 61, no. 4, pp. 364–370, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Y. Ong, H. Dai, and K. W. Leong, “Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture,” Biomaterials, vol. 27, no. 22, pp. 4087–4097, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Hemberger, W. Yang, D. Natale et al., “Stem cells from fetal membranes—a workshop report,” Placenta, vol. 29, pp. 17–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. I. Pappa and N. P. Anagnou, “Novel sources of fetal stem cells: where do they fit on the developmental continuum?” Regenerative Medicine, vol. 4, no. 3, pp. 423–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. P. De Coppi, G. Bartsch, M. M. Siddiqui et al., “Isolation of amniotic stem cell lines with potential for therapy,” Nature Biotechnology, vol. 25, no. 1, pp. 100–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. S. In 't Anker, S. A. Scherjon, C. Kleijburg-van der Keur et al., “Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation,” Blood, vol. 102, no. 4, pp. 1548–1549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Sessarego, A. Parodi, M. Podestà et al., “Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application,” Haematologica, vol. 93, no. 3, pp. 339–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Poloni, G. Maurizi, L. Babini et al., “Human mesenchymal stem cells from chorionic villi and amniotic fluid are not susceptible to transformation after extensive in vitro expansion,” Cell Transplantation, vol. 20, no. 5, pp. 643–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Kim, Y. Lee, H. Kim et al., “Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells,” Cell Proliferation, vol. 40, no. 1, pp. 75–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Hipp and A. Atala, “Sources of stem cells for regenerative medicine,” Stem Cell Reviews, vol. 4, no. 1, pp. 3–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. W. S. Shaw, A. L. David, and P. De Coppi, “Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid,” Current Opinion in Obstetrics and Gynecology, vol. 23, no. 2, pp. 109–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Y. L. Waese, R. R. Kandel, and W. L. Stanford, “Application of stem cells in bone repair,” Skeletal Radiology, vol. 37, no. 7, pp. 601–608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Sun, K. Feng, J. Hu, S. Soker, A. Atala, and P. X. Ma, “Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds,” Biomaterials, vol. 31, no. 6, pp. 1133–1139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. S. Park, H. N. Yang, D. G. Woo, S. Y. Jeon, and K. H. Park, “The promotion of chondrogenesis, osteogenesis, and adipogenesis of human mesenchymal stem cells by multiple growth factors incorporated into nanosphere-coated microspheres,” Biomaterials, vol. 32, no. 1, pp. 28–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Saulnier, M. A. Puglisi, W. Lattanzi et al., “Gene profiling of bone marrow- and adipose tissue-derived stromal cells: a key role of Kruppel-like factor 4 in cell fate regulation,” Cytotherapy, vol. 13, no. 3, pp. 329–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Bernardini, N. Saulnier, C. Parrilla et al., “Early transcriptional events during osteogenic differentiation of human bone marrow stromal cells induced by Lim mineralization protein 3,” Gene Expression, vol. 15, no. 1, pp. 27–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Pola, W. Gao, Y. Zhou et al., “Efficient bone formation by gene transfer of human LIM mineralization protein-3,” Gene Therapy, vol. 11, no. 8, pp. 683–693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. D. Boden, Y. Liu, G. A. Hair et al., “LMP-1, a LIM-domain protein, mediates BMP-6 effects on bone formation,” Endocrinology, vol. 139, no. 12, pp. 5125–5134, 1998. View at Scopus
  25. S. D. Boden, L. Titus, G. Hair et al., “1998 Volvo award winner in basic sciences studies: Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1),” Spine, vol. 23, no. 23, pp. 2486–2492, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Liu, G. A. Hair, S. D. Boden, M. Viggeswarapu, and L. Titus, “Overexpressed LIM mineralization proteins do not require LIM domains to induce bone,” Journal of Bone and Mineral Research, vol. 17, no. 3, pp. 406–414, 2002. View at Scopus
  27. S. Sangadala, S. D. Boden, M. Viggeswarapu, Y. Liu, and L. Titus, “LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of smads,” Journal of Biological Chemistry, vol. 281, no. 25, pp. 17212–17219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. Tsai, J. L. Lee, Y. J. Chang, and S. M. Hwang, “Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol,” Human Reproduction, vol. 19, no. 6, pp. 1450–1456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. D. W. Young, J. Pratap, A. Javed et al., “SWI/SNF chromatin remodeling complex is obligatory for BMP2-induced, Runx2-dependent skeletal gene expression that controls osteoblast differentiation,” Journal of Cellular Biochemistry, vol. 94, no. 4, pp. 720–730, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Li, J. McClintick, L. Zhong, H. J. Edenberg, M. C. Yoder, and R. J. Chan, “Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4,” Blood, vol. 105, no. 2, pp. 635–637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Natanake, N. Fukui, Y. Iwamatsu et al., “Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells,” Molecular and Cellular Biology, vol. 26, no. 20, pp. 7772–7782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. J. Livack and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Viggeswarapu, S. D. Boden, Y. Liu et al., “Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo,” Journal of Bone and Joint Surgery. Series A, vol. 83, no. 3, pp. 364–376, 2001. View at Scopus
  34. H. S. Kim, M. Viggeswarapu, S. D. Boden et al., “Overcoming the immune response to permit ex vivo gene therapy for spine fusion with human type 5 adenoviral delivery of the LIM mineralization protein-1 cDNA,” Spine, vol. 28, no. 3, pp. 219–226, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. S. T. Yoon, J. S. Park, K. S. Kim et al., “ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo,” Spine, vol. 29, no. 23, pp. 2603–2611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Fei, S. D. Boden, S. Sangadala, M. Viggeswarapu, Y. Liu, and L. Titus, “Truncated human LMP-1 triggers differentiation of C2C 12 cells to an osteoblastic phenotype in vitro,” Acta Biochimica et Biophysica Sinica, vol. 39, no. 9, pp. 693–700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. C. A. Strohbach, C. H. Rundle, J. E. Wergedal et al., “LMP-1 retroviral gene therapy influences osteoblast differentiation and fracture repair: a preliminary study,” Calcified Tissue International, vol. 83, no. 3, pp. 202–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Wang, F. Cui, V. Madhu, A. S. Dighe, G. Balian, and Q. Cui, “Combined VEGF and LMP-1 delivery enhances osteoprogenitor cell differentiation and ectopic bone formation,” Growth Factors, vol. 29, no. 1, pp. 36–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Minamide, S. D. Boden, M. Viggeswarapu, G. A. Hair, C. Oliver, and L. Titus, “Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1,” Journal of Bone and Joint Surgery. Series A, vol. 85, no. 6, pp. 1030–1039, 2003. View at Scopus
  40. E. Galende, I. Karakikes, L. Edelmann et al., “Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells,” Cellular Reprogramming, vol. 12, no. 2, pp. 117–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Yu, J. Li, H. Chen et al., “Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion,” Oncogene, vol. 30, no. 18, pp. 2161–2172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Lin, P. Perez, D. Lei, J. Xu, X. Gao, and J. Bao, “Two-phase analysis of molecular pathways underlying induced pluripotent stem cell induction,” Stem Cells, vol. 29, no. 12, pp. 1963–1974, 2011. View at Scopus
  44. N. Mah, Y. Wang, M.-C. Liao et al., “Molecular insights into reprogramming-initiation events mediated by the OSKM gene regulatory network,” PLoS One, vol. 6, no. 8, Article ID e24351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Li, J. Zhou, G. Shi et al., “Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells,” Human Molecular Genetics, vol. 18, no. 22, pp. 4340–4349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. H. E. Lu, M. S. Tsai, Y. C. Yang et al., “Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system,” Experimental Cell Research, vol. 317, no. 13, pp. 1895–1903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. K. E. King, V. P. Iyemere, P. L. Weissberg, and C. M. Shanahan, “Krüppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor β1 in the regulation of vascular smooth muscle cell phenotype,” Journal of Biological Chemistry, vol. 278, no. 13, pp. 11661–11669, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Kawai-Kowase, T. Ohshima, H. Matsui, et al., “PIAS1 mediates TGFbeta-induced SM alpha-actin gene expression through inhibition of KLF4 function-expression by protein sumoylation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 1, pp. 99–106, 2009.
  49. P. J. Adam, C. P. Regan, M. B. Hautmann, and G. K. Owens, “Positive- and negative-acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo,” The Journal of Biological Chemistry, vol. 275, no. 48, pp. 37798–37806, 2000.
  50. H. X. Li, M. Han, and M. Bernier, “Krüppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells,” The Journal of Biological Chemistry, vol. 285, no. 23, pp. 17846–17856, 2010.
  51. B. Kulterer, G. Friedl, A. Jandrositz et al., “Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation,” BMC Genomics, vol. 8, article no. 70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. B. N. Davis-Dusenbery, M. C. Chan, K. E. Reno et al., “Down-regulation of Krüppel-like Factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-β and bone morphogenetic protein 4,” The Journal of Biological Chemistry, vol. 286, no. 32, pp. 28097–28110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Lin, V. P. Navarro, K. M. Kempeinen et al., “LMP1 regulates periodontal ligament progenitor cell proliferation and differentiation,” Bone, vol. 47, no. 1, pp. 55–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Jiang, Y. S. Chan, Y. H. Loh et al., “A core Klf circuitry regulates self-renewal of embryonic stem cells,” Nature Cell Biology, vol. 10, no. 3, pp. 353–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Hall, G. Guo, J. Wray et al., “Oct4 and LIF/Stat3 additively induce krüppel factors to sustain embryonic stem cell self-renewal,” Cell Stem Cell, vol. 5, no. 6, pp. 597–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Ficz, M. R. Branco, S. Seisenberger et al., “Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation,” Nature, vol. 473, no. 7347, pp. 398–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Lee, J. Lee, E. Jung et al., “Ultraviolet A regulates adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via up-regulation of Kruppel-like factor 2,” Journal of Biological Chemistry, vol. 285, no. 42, pp. 32647–32656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. D. C. Berry, D. DeSantis, H. Soltanian, C. M. Croniger, and N. Noy, “Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity,” Diabetes, vol. 61, no. 5, pp. 1112–1121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Das, J. Lu, M. Joseph et al., “Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis,” Current Molecular Medicine, vol. 12, no. 2, pp. 113–125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. S. M. Meadows, M. C. Salanga, and P. A. Krieg, “Krüppel-like factor 2 cooperates with the ETS family protein ERG to activate Flk1 expression during vascular development,” Development, vol. 136, no. 7, pp. 1115–1125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Xie, Y. Tang, S. Shen et al., “Smurf1 ubiquitin ligase targets Kruppel-like factor KLF2 for ubiquitination and degradation in human lung cancer H1299 cells,” Biochemical and Biophysical Research Communications, vol. 407, no. 1, pp. 254–259, 2011. View at Publisher · View at Google Scholar · View at Scopus