About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 828139, 9 pages
http://dx.doi.org/10.1155/2012/828139
Research Article

Development of 𝟗 𝟗 𝐦 𝐓 𝐜 -N4-NIM for Molecular Imaging of Tumor Hypoxia

1Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
2Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

Received 31 January 2012; Revised 24 March 2012; Accepted 1 April 2012

Academic Editor: Yasuhisa Fujibayashi

Copyright © 2012 Mohammad S. Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Liang, “Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines,” Journal of Neuro-Oncology, vol. 29, no. 2, pp. 149–155, 1996. View at Scopus
  2. A. J. Giaccia, “Hypoxic stress proteins: survival of the fittest,” Seminars in Radiation Oncology, vol. 6, no. 1, pp. 46–58, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. T. G. Graeber, C. Osmanian, T. Jacks et al., “Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours,” Nature, vol. 379, no. 6560, pp. 88–91, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Dai, M. L. Huang, C. Y. Hsu, and K. S. C. Chao, “Inhibition of hypoxia inducible factor 1α causes oxygen-independent cytotoxicity and induces p53 independent apoptosis in glioblastoma cells,” International Journal of Radiation Oncology Biology Physics, vol. 55, no. 4, pp. 1027–1036, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Brown, “The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain Memorial Award Lecture,” Cancer Research, vol. 59, no. 23, pp. 5863–5870, 1999. View at Scopus
  6. T. Chu, R. Li, S. Hu, X. Liu, and X. Wang, “Preparation and biodistribution of technetium-99m-labeled 1-(2-nitroimidazole-1-yl)-propanhydroxyiminoamide (N2IPA) as a tumor hypoxia marker,” Nuclear Medicine and Biology, vol. 31, no. 2, pp. 199–203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. B. M. Seddon, R. J. Maxwell, D. J. Honess et al., “Validation of the fluorinated 2-nitroimidazole SR-4554 as a noninvasive hypoxia marker detected by magnetic resonance spectroscopy,” Clinical Cancer Research, vol. 8, no. 7, pp. 2323–2335, 2002. View at Scopus
  8. L. Bentzen, S. Keiding, M. Nordsmark et al., “Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours,” Radiotherapy and Oncology, vol. 67, no. 3, pp. 339–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Grönroos, L. Bentzen, P. Marjamäki et al., “Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 4, pp. 513–520, 2004. View at Scopus
  10. M. B. Mallia, S. Subramanian, A. Mathur, H. D. Sarma, M. Venkatesh, and S. Banerjee, “Comparing hypoxia-targeting potential of 99mTc(CO) 3-labeled 2-nitro and 4-nitroimidazole,” Journal of Labelled Compounds and Radiopharmaceuticals, vol. 51, no. 8, pp. 308–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. M. Herzog, E. Deutsch, K. Deutsch, E. B. Silberstein, R. Sarangarajan, and W. Cacini, “Synthesis and renal excretion of technetium-99m-labeled organic cations,” Journal of Nuclear Medicine, vol. 33, no. 12, pp. 2190–2195, 1992. View at Scopus
  12. F. L. Kong, M. S. Ali, Y. Zhang et al., “Synthesis and evaluation of amino acid-based radiotracer Tc99m-N4-AMT for breast cancer imaging,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 276907, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Liu, “The role of coordination chemistry in the development of target-specific radiopharmaceuticals,” Chemical Society Reviews, vol. 33, no. 7, pp. 445–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Liu, “Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides,” Advanced Drug Delivery Reviews, vol. 60, no. 12, pp. 1347–1370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ohtsuki, K. Akashi, Y. Aoka et al., “Technetium-99m HYNIC-annexin V: a potential radiopharmaceutical for the in-vivo detection of apoptosis,” European Journal of Nuclear Medicine, vol. 26, no. 10, pp. 1251–1258, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. C. G. Van Nerom, G. M. Bormans, M. J. De Roo, and A. M. Verbruggen, “First experience in healthy volunteers with technetium-99m L,L-ethylenedicysteine, a new renal imaging agent,” European Journal of Nuclear Medicine, vol. 20, no. 9, pp. 738–746, 1993. View at Scopus
  17. C. H. Kao, S. P. ChangLai, P. U. Chieng, and T. C. Yen, “Technicium-99m methoxyisobutylisonitrile chest imaging of a small cell lung carcinoma: relation to patient prognosis and chemotherapy response- a preliminary report,” Cancer, vol. 83, pp. 64–68, 1998.
  18. H. C. Wu, C. H. Chang, M. M. Lai, C. C. Lin, C. C. Lee, and A. Kao, “Using Tc-99m DMSA renal cortex scan to detect renal damage in women with type 2 diabetes,” Journal of Diabetes and Its Complications, vol. 17, no. 5, pp. 297–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Brown and A. J. Giaccia, “The unique physiology of solid tumors: opportunities (and problems) for cancer therapy,” Cancer Research, vol. 58, no. 7, pp. 1408–1416, 1998. View at Scopus
  20. H. Y. Lee, T. Lee, N. Lee et al., “Src activates HIF-1α not through direct phosphorylation of HIF-1α-specific prolyl-4 hydroxylase 2 but through activation of the NADPH oxidase/Rac pathway,” Carcinogenesis, vol. 32, no. 5, pp. 703–712, 2011. View at Publisher · View at Google Scholar · View at Scopus